全国通用2022高考数学二轮复习专题一第3讲导数与函数的单调性极值最值问题训练文.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 通用 2022 高考 数学 二轮 复习 专题 导数 函数 调性 极值 问题 训练
- 资源描述:
-
1、第3讲导数与函数的单调性、极值、最值问题一、选择题1.函数f(x)x2ln x的单调递减区间为()A.(1,1 B.(0,1C.1,) D.(0,)解析由题意知,函数的定义域为(0,),又由f(x)x0,解得0x1,所以函数f(x)的单调递减区间为(0,1.答案B2.(2022昆明模拟)已知函数f(x)mx2ln x2x在定义域内是增函数,则实数m的取值范围是()A.1,1 B.1,)C.1,) D.(,1解析f(x)mx20对一切x0恒成立,m.令g(x),则当1,即x1时,函数g(x)取最大值1.故m1.答案C3.(2022新课标全国卷)若函数f(x)kxln x在区间(1,)上单调递增,
2、则k的取值范围是()A.(,2 B.(,1C.2,) D.1,)解析f(x)k,由题意知f(x)0在(1,)上恒成立,即k0在(1,)上恒成立,由于k,而01,所以k1.故选D.答案D4.(2022临沂模拟)函数f(x)x33axa在(0,1)内有最小值,则a的取值范围是()A.0,1) B.(1,1) C. D.(0,1)解析f(x)3x23a3(x2a).当a0时,f(x)0,f(x)在(0,1)内单调递增,无最小值.当a0时,f(x)3(x)(x).当x(,)和(,)时,f(x)单调递增;当x(,)时,f(x)单调递减,所以当1,即0a1时,f(x)在(0,1)内有最小值.答案D5.已知
3、函数f(x)x3ax23x1有两个极值点,则实数a的取值范围是()A.(,) B.(,)C.(,) D.(,)(,)解析f(x)x22ax3.由题意知方程f(x)0有两个不相等的实数根,所以4a2120,解得a或a.答案D二、填空题6.(2022天津卷)已知函数f(x)axln x,x(0,),其中a为实数,f(x)为f(x)的导函数.若f(1)3,则a的值为_.解析f(x)aln xaxa(ln x1),由f(1)3得,a(ln 11)3,解得a3.答案37.若f(x)x33ax23(a2)x1在R上单调递增,则a的取值范围是_.解析f(x)3x26ax3(a2).由题意知f(x)0在R上恒
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-339113.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
