2020-2021学年八年级数学上册 难点突破11 一次函数与二元一次方程组问题试题 北师大版.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020-2021学年八年级数学上册 难点突破11 一次函数与二元一次方程组问题试题 北师大版 2020 2021 学年 八年
- 资源描述:
-
1、专题11一次函数与二元一次方程组问题【知识点总结】一、二元一次方程与一次函数的关系若k,b表示常数且k0,则ykxb为二元一次方程,有无数个解;将其变形可得ykxb,将x,y看作自变量、因变量,则ykxb是一次函数事实上,以方程ykxb的解为坐标的点组成的图象与一次函数ykxb的图象相同二、用图象法求二元一次方程组的近似解用图象法求二元一次方程组的近似解的一般步骤:1、先把方程组中两个二元一次方程转化为一次函数的形式:y1k1xb1和y2k2xb2;2、建立平面直角坐标系,画出两个一次函数的图象;3、写出这两条直线的交点的横纵坐标,这两个数的值就是二元一次方程组的解中的两个数值,横坐标是x,纵
2、坐标是y.三、利用二元一次方程组确定一次函数的表达式每个二元一次方程组都对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标因此一次函数与二元一次方程组有密切联系利用二元一次方程组确定一次函数的表达式的一般步骤如下:1、写出函数表达式:一次函数ykxb;2、把已知条件代入,得到关于k,b的方程组;3、解方程组,求出k,b的值,写出其表达式【针对训练】1、在平面直角坐标系中,已知点A(x,y),点B(xmy,mxy)(其中m为常数,且m0),则称B是点A的“m族衍生点
3、”例如:点A(1,2)的“3族衍生点”B的坐标为(132,312),即B(5,1)(1)点(2,0)的“2族衍生点”的坐标为 ;(2)若点A的“3族衍生点”B的坐标是(1,5),则点A的坐标为 ;(3)若点A(x,0)(其中x0),点A的“m族衍生点“为点B,且ABOA,求m的值;(4)若点A(x,y)的“m族衍生点”与“m族衍生点”都关于y轴对称,则点A的位置在 解:(1)点(2,0)的“2族衍生点”的坐标为(220,220),即(2,4),故答案为(2,4);(2)设点A坐标为(x,y),由题意可得:,点A坐标为(2,1);(3)点A(x,0),点A的“m族衍生点“为点B(x,mx),AB
4、|mx|,ABOA,|x|mx|,m1;(4)点A(x,y),点A(x,y)的“m族衍生点”为(xmy,mxy),点A(x,y)的“m族衍生点”为(x+my,mxy),点A(x,y)的“m族衍生点”与“m族衍生点”都关于y轴对称,x0,点A在y轴上,故答案为:y轴上2、阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图:在ABC中,ACB90,ACBC,分别过A、B向经过点C直线作垂线,垂足分别为D、E,我们很容易发现结论:ADCCEB(1)探究问题:如果ACBC,其他条件不变,如图,可得到结论;ADCCEB请你说明理由(2)学以
5、致用:如图,在平面直角坐标系中,直线yx与直线CD交于点M(2,1),且两直线夹角为,且tan,请你求出直线CD的解析式(3)拓展应用:如图,在矩形ABCD中,AB3,BC5,点E为BC边上一个动点,连接BE,将线段AE绕点E顺时针旋转90,点A落在点P处,当点P在矩形ABCD外部时,连接PC,PD若DPC为直角三角形时,请你探究并直接写出BE的长解:(1)理由:ACB90,ACDBCE90,又ADC90,ACD+DAC90,BCEDAC,且ADCBEC90,ADCCEB;(2)如图,过点O作ONOM交直线CD于点N,分别过M、N作MEx轴NFx轴,由(1)可得:NFOOEM,点M(2,1),
6、OE2,ME1,tan,NF3,OF,点N(,3),设直线CD表达式:ykx+b,直线CD的解析式为:yx+;(3)当CDP90时,如图,过点P作PHBC,交BC延长线于点H,ADC+CDP180,点A,点D,点P三点共线,BAPBH90,四边形ABHP是矩形,ABPH3,将线段AE绕点E顺时针旋转90,AEEP,AEP90,AEBPEH90,且BAE+AEB90,BAEPEH,且BH90,AEEP,ABEEHP(AAS),BEPH3,当CPD90时,如图,过点P作PHBC,交BC延长线于点H,延长HP交AD的延长线于N,则四边形CDNH是矩形,CDNH3,DNCH,设BEx,则EC5x,将线
7、段AE绕点E顺时针旋转90,AEEP,AEP90,AEBPEH90,且BAE+AEB90,BAEPEH,且BEHP90,AEEP,ABEEHP(AAS),PHBEx,ABEH3,PN3x,CH3(5x)x2DN,DPC90,DPN+CPH90,且CPH+PCH90,PCHDPN,且NCHP90,CPHPDH,x点P在矩形ABCD外部,x,BE,综上所述:当BE的长为3或时,DPC为直角三角形3、如图,在平面直角坐标系中,直线ykx+b与x轴交于点A(5,0),与y轴交于点B;直线yx+6过点B和点C,且ACx轴点M从点B出发以每秒2个单位长度的速度沿y轴向点O运动,同时点N从点A出发以每秒3个
8、单位长度的速度沿射线AC向点C运动,当点M到达点O时,点M、N同时停止运动,设点M运动的时间为t(秒),连接MN(1)求直线ykx+b的函数表达式及点C的坐标;(2)当MNx轴时,求t的值;(3)MN与AB交于点D,连接CD,在点M、N运动过程中,线段CD的长度是否变化?如果变化,请直接写出线段CD长度变化的范围;如果不变化,请直接写出线段CD的长度解:(1)ACx轴,点A(5,0),点C的横坐标为5,对于yx+6,当x5时,y5+610,对于x0,y6,点C的坐标为(5,10),点B的坐标为(0,6),直线ykx+b与x轴交于点A(5,0),与y轴交于点B(0,6),则,解得,直线ykx+b
9、的函数表达式为yx+6,综上所述,直线ykx+b的函数表达式为yx+6,点C的坐标为(5,10);(2)由题意得,BM2t,AN3t,OM62t,OMAN,MNx轴,四边形MOAN为平行四边形,OMAN,62t3t,解得,t,当MNx轴时,t;(3)线段CD的长度不变化,理由如下:过点D作EFx轴,交OB于E,交AC于F,EFx轴,BMAN,AOE90,四边形EOAF为矩形,EFOA5,EOFA,BMAN,BDMADN,EF5,DE2,DF3,BMAN,BDEADF,OB6,EOFA,CFACFA,CD4、如图,直线y2x+8分别交x轴,y轴于点A,B,直线yx+3交y轴于点C,两直线相交于点
10、D(1)求点D的坐标;(2)如图2,过点A作AEy轴交直线yx+3于点E,连接AC,BE求证:四边形ACBE是菱形;(3)如图3,在(2)的条件下,点F在线段BC上,点G在线段AB上,连接CG,FG,当CGFG,且CGFABC时,求点G的坐标解:(1)根据题意可得:,解得:点D坐标(2,4)(2)直线y2x+8分别交x轴,y轴于点A,B,点B(0,8),点A(4,0),直线yx+3交y轴于点C,点C(0,3),AEy轴交直线yx+3于点E,点E(4,5)点B(0,8),点A(4,0),点C(0,3),点E(4,5),BC5,AE5,AC5,BE5,BCAEACBE,四边形ACBE是菱形;(3)
11、BCAC,ABCCAB,CGFABC,AGFABC+BFGAGC+CGFAGCBFG,且FGCG,ABCCAB,ACGBGF(AAS)BGAC5,设点G(a,2a+8),(2a+88)2+(a0)252,a,点G在线段AB上a,点G(,82)5、如图,在平面直角坐标系xOy中,直线l1:yx+2与x轴交于点A,直线l2:y3x6与x轴交于点D,与l1相交于点C(1)求点D的坐标;(2)在y轴上一点E,若SACESACD,求点E的坐标;(3)直线l1上一点P(1,3),平面内一点F,若以A、P、F为顶点的三角形与APD全等,求点F的坐标解:(1)直线l2:y3x6与x轴交于点D,令y0,则3x6
12、0,x2,D(2,0);(2)如图1,直线l1:yx+2与x轴交于点A,令y0x+20,x2,A(2,0),由(1)知,D(2,0),AD4,联立直线l1,l2的解析式得,解得,C(4,6),SACDAD|yC|4612,SACESACD,SACE12,直线l1与y轴的交点记作点B,B(0,2),设点E(0,m),BE|m2|,SACEBE|xCxA|m2|4+2|4|m2|12,m2或m6,点E(0,2)或(0,6);(3)如图2,当点F在直线l1上方时,以A、P、F为顶点的三角形与APD全等,、当APFAPD时,连接DF,BD,由(2)知,B(0,2),由(1)知,A(2,0),D(2,0
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-576166.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
