2020高考数学理二轮课标通用专题能力训练14 空间中的平行与垂直 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020高考数学理二轮课标通用专题能力训练14空间中的平行与垂直 WORD版含解析 2020 高考 学理 二轮 通用 专题 能力 训练 14 空间 中的 平行 垂直 WORD 解析
- 资源描述:
-
1、专题能力训练14空间中的平行与垂直专题能力训练第34页一、能力突破训练1.如图,O为正方体ABCD-A1B1C1D1的底面ABCD的中心,则下列直线中与B1O垂直的是()A.A1DB.AA1C.A1D1D.A1C1答案:D解析:易知A1C1平面BB1D1D.B1O平面BB1D1D,A1C1B1O,故选D.2.如图,在正方形ABCD中,E,F分别是BC,CD的中点,沿AE,AF,EF把正方形折成一个四面体,使B,C,D三点重合,重合后的点记为P,点P在AEF内的射影为O.则下列说法正确的是()A.O是AEF的垂心B.O是AEF的内心C.O是AEF的外心D.O是AEF的重心答案:A解析:如图,易知
2、PA,PE,PF两两垂直,PA平面PEF,从而PAEF,而PO平面AEF,则POEF,EF平面PAO,EFAO.同理可知AEFO,AFEO,O为AEF的垂心.3.,是两个平面,m,n是两条直线,有下列四个命题:如果mn,m,n,那么.如果m,n,那么mn.如果,m,那么m.如果mn,那么m与所成的角和n与所成的角相等.其中正确的命题有.(填写所有正确命题的编号)答案:解析:对于,若mn,m,n,则,的位置关系无法确定,故错误;对于,因为n,所以过直线n作平面与平面相交于直线c,则nc.因为m,所以mc,所以mn,故正确;对于,由两个平面平行的性质可知正确;对于,由线面所成角的定义和等角定理可知
3、其正确,故正确的命题有.4.已知正四棱锥S-ABCD的底面边长为2,高为2,E是边BC的中点,动点P在表面上运动,并且总保持PEAC,则动点P的轨迹的周长为.答案:2+6解析:如图,取CD的中点F,SC的中点G,连接EF,EG,FG.设EF交AC于点H,连接GH,易知ACEF.又GHSO,GH平面ABCD,ACGH.又GHEF=H,AC平面EFG.故点P的轨迹是EFG,其周长为2+6.5.下列命题正确的是.(填上你认为正确的所有命题的序号)空间中三个平面,若,则;若a,b,c为三条两两异面的直线,则存在无数条直线与a,b,c都相交;若球O与棱长为a的正四面体各面都相切,则该球的表面积为6a2;
4、在三棱锥P-ABC中,若PABC,PBAC,则PCAB.答案:解析:中也可以与相交;作平面与a,b,c都相交;中可得球的半径为r=612a;中由PABC,PBAC得点P在底面ABC的射影为ABC的垂心,故PCAB.6.在正三棱柱A1B1C1-ABC中,点D是BC的中点,BC=2BB1.设B1DBC1=F.求证:(1)A1C平面AB1D;(2)BC1平面AB1D.答案:证明(1)连接A1B,设A1B交AB1于点E,连接DE.点D是BC的中点,点E是A1B的中点,DEA1C.A1C平面AB1D,DE平面AB1D,A1C平面AB1D.(2)ABC是正三角形,点D是BC的中点,ADBC.平面ABC平面
5、B1BCC1,平面ABC平面B1BCC1=BC,AD平面ABC,AD平面B1BCC1.BC1平面B1BCC1,ADBC1.点D是BC的中点,BC=2BB1,BD=22BB1.BDBB1=CC1BC=22,RtB1BDRtBCC1,BDB1=BC1C.FBD+BDF=C1BC+BC1C=90.BC1B1D.B1DAD=D,BC1平面AB1D.7.如图,在四棱锥P-ABCD中,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是ABC=60的菱形,M为PC的中点.(1)求证:PCAD;(2)证明在PB上存在一点Q,使得A,Q,M,D四点共面;(3)求点D到平面PAM的距离.答案:(1)证法
6、一取AD的中点O,连接OP,OC,AC,依题意可知PAD,ACD均为正三角形,所以OCAD,OPAD.又OCOP=O,OC平面POC,OP平面POC,所以AD平面POC.又PC平面POC,所以PCAD.证法二连接AC,依题意可知PAD,ACD均为正三角形.因为M为PC的中点,所以AMPC,DMPC.又AMDM=M,AM平面AMD,DM平面AMD,所以PC平面AMD.因为AD平面AMD,所以PCAD.(2)证明当点Q为棱PB的中点时,A,Q,M,D四点共面,证明如下:取棱PB的中点Q,连接QM,QA.因为M为PC的中点,所以QMBC.在菱形ABCD中,ADBC,所以QMAD,所以A,Q,M,D四
7、点共面.(3)解点D到平面PAM的距离即点D到平面PAC的距离.由(1)可知POAD,又平面PAD平面ABCD,平面PAD平面ABCD=AD,PO平面PAD,所以PO平面ABCD,即PO为三棱锥P-ACD的高.在RtPOC中,PO=OC=3,PC=6,在PAC中,PA=AC=2,PC=6,边PC上的高AM=PA2-PM2=102,所以PAC的面积SPAC=12PCAM=126102=152.设点D到平面PAC的距离为h,由VD-PAC=VP-ACD,得13SPACh=13SACDPO.因为SACD=3422=3,所以13152h=1333,解得h=2155,所以点D到平面PAM的距离为2155
8、.8.在四棱锥P-ABCD中,平面ABCD平面PCD,底面ABCD为梯形,ABCD,ADDC.(1)求证:AB平面PCD;(2)求证:AD平面PCD;(3)若M是棱PA的中点,求证:对于棱BC上任意一点F,MF与PC都不平行.答案:证明(1)ABCD,CD平面PCD,AB平面PCD,AB平面PCD.(2)平面ABCD平面PCD,平面ABCD平面PCD=CD,ADCD,AD平面ABCD,AD平面PCD.(3)(方法一)假设棱BC上存在一点F,使得MFPC.连接AC,取其中点N,连接MN,在PAC中,M,N分别为PA,CA的中点,MNPC.过直线外一点只有一条直线与已知直线平行,MF与MN重合,点
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-594326.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
