分享
分享赚钱 收藏 举报 版权申诉 / 37

类型2022-2023学年人教版九年级数学上册第二十三章旋转专项攻克试卷(解析版).docx

  • 上传人:a****
  • 文档编号:635352
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:37
  • 大小:1.39MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 人教版 九年级 数学 上册 第二十三 旋转 专项 攻克 试卷 解析
    资源描述:

    1、人教版九年级数学上册第二十三章旋转专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在钝角中,将绕点顺时针旋转得到,点,的对应点分别为,连接则下列结论一定正确的是()ABCD平分2、已知两点,

    2、若,则点与()A关于y轴对称B关于x轴对称C关于原点对称D以上均不对3、下列四个图形中,中心对称图形是()ABCD4、如图,在中,将绕点顺时针旋转度得到,当点的对应点恰好落在边上时,则的长为()A1.6B1.8C2D2.65、2020年7月20日,宁津县人民政府印发津县城市生活垃圾分类制度实施方案的通知,全面推行生活垃圾分类下列垃圾分类标志分别是厨余垃圾、有害垃圾、其他垃圾和可回收物,其中既是轴对称图形又是中心对称图形的是()ABCD6、如图,六边形ABCDEF的内角都相等,DAB60,ABDE,则下列结论:ABDE;EFADBC;AFCD;四边形ACDF是平行四边形;六边形ABCDEF既是中

    3、心对称图形,又是轴对称图形其中成立的个数是()A2个B3个C4个D5个7、下列图形中既是轴对称图形,也是中心对称图形的是()ABCD8、如图,在平面直角坐标系中,已知点P(0,2),点A(4,2)以点P为旋转中心,把点A按逆时针方向旋转60,得点B在,四个点中,直线PB经过的点是()ABCD9、如图,在平面直角坐标系xOy中,ABC顶点的横、纵坐标都是整数若将ABC以某点为旋转中心,旋转得到ABC,则旋转中心的坐标是()A(1,1)B(1,1)C(0,0)D(1,2)10、点 A(x,y)在第二象限内,且x=2,y=3,则点A关于原点对称的点的坐标为()A(-2,3)B(2,-3)C(-3,2

    4、)D(3,-2)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、两块等腰直角三角形纸片AOB和COD按图1所示放置,直角顶点重合在点O处,AB13,CD7保持纸片AOB不动,将纸片COD绕点O逆时针旋转a(090),如图2所示当BD与CD在同一直线上(如图3)时,则ABC的面积为_2、如图,在平面直角坐标系中,等腰直角三角形OAB,点O为坐标原点,点B在x轴上,点A的坐是(1,1)若将绕点O顺时针方向依次旋转45后得到,可得,则的坐标是_3、以水平数轴的原点为圆心过正半轴上的每一刻度点画同心圆,将逆时针依次旋转、得到条射线,构成如图所示的“圆”坐标系,点、的坐标分别表示

    5、为、,则点的坐标表示为_4、如图,把ABC绕着点A逆时针旋转90得到ADE,连接BE,CD,M是BE的中点,若AM=,则CD的长为_5、如图,在平面直角坐标系中,点C的坐标为(1,0),点A的坐标为(3,3),将点A绕点C顺时针旋转90得到点B,则点B的坐标为_三、解答题(5小题,每小题10分,共计50分)1、如图1,直线上有一点O,过点O在直线上方作射线将一直角三角板的直角顶点放在点O处,一条直角边在射线上,另一边在直线上方将直角三角板绕着点O按每秒的速度逆时针旋转一周,设旋转时间为t秒(1)当直角三角板旋转到如图2的位置时,恰好平分,此时,与之间有何数量关系?并说明理由;(2)在旋转的过程

    6、中,若射线的位置保持不变,且当边与射线相交时(如图3),则的值为_;当边所在的直线与平行时,求t的值2、如图,已知ABC中,AB=AC,把ABC绕A点沿顺时针方向旋转得到ADE,连接BD、CE交于点F(1)求证:;(2)若AB=2,当四边形ADFC是菱形时,求BF的长3、如图,等腰中,点P为射线BC上一动点(不与点B、C重合),以点P为中心,将线段PC逆时针旋转角,得到线段PQ,连接、M为线段BQ的中点(1)若点P在线段BC上,且M恰好也为AP的中点,依题意在图1中补全图形:求出此时的值和的值;(2)写出一个的值,使得对于任意线段BC延长线上的点P,总有的值为定值,并证明;4、在RtABC中,

    7、ABC90,A,O为AC的中点,将点O沿BC翻折得到点,将ABC绕点顺时针旋转,使点B与C重合,旋转后得到ECF(1)如图1,旋转角为 (用含的式子表示)(2)如图2,连BE,BF,点M为BE的中点,连接OM,BFC的度数为 (用含的式子表示)试探究OM与BF之间的关系(3)如图3,若30,请直接写出的值为 5、如图,在平面直角坐标系中,点A的坐标(2,0),点C是y轴上的动点,当点C在y轴上移动时,始终保持是等边三角形(点A、C、P按逆时针方向排列);当点C移动到O点时,得到等边三角形AOB(此时点P与点B重合)初步探究(1)点B的坐标为 ;(2)点C在y轴上移动过程中,当等边三角形ACP的

    8、顶点P在第二象限时,连接BP,求证:;深入探究(3)当点C在y轴上移动时,点P也随之运动,探究点P在怎样的图形上运动,请直接写出结论,并求出这个图形所对应的函数表达式;拓展应用(4)点C在y轴上移动过程中,当OP=OB时,点C的坐标为 -参考答案-一、单选题1、D【解析】【分析】根据旋转可知CABEAD,CAE=70,结合BAC=35,可知BAE=35,则可证得CABEAB,即可作答【详解】根据旋转的性质可知CABEAD,CAE=70,BAE=CAE-CAB=70-35=35,AC=AE,AB=AD,BC=DE,ABC=ADE,故A、B错误,CAB=EAB,AC=AE,AB=AB,CABEAB

    9、,EABEADBEA=DEA,AE平分BED,故D正确,AD+BE=AB+BEAE=AC,故C错误,故选:D【考点】本题考查了旋转的性质和全等三角形的判定与性质,求出BAE=35是解答本题的关键2、C【解析】【分析】首先利用等式求出 然后可以根据横纵坐标的关系得出结果【详解】, 两点,点与关于原点对称,故选:C【考点】本题主要考查平面直角坐标系中关于原点对称的点,属于基础题,利用等式找到点与横纵坐标的关系是解题关键3、D【解析】【分析】根据中心对称图形的概念结合各图形的特点求解【详解】解:A、不是中心对称图形,不符合题意; B、不是中心对称图形,不符合题意; C、不是中心对称图形,不符合题意;

    10、 D、是中心对称图形,符合题意 故选:D【考点】本题考查了中心对称图形与轴对称图形的概念判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合4、A【解析】【分析】由将ABC绕点A按顺时针旋转一定角度得到ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由B=60,可证得ABD是等边三角形,继而可得BD=AB=2,则可求得答案【详解】由旋转的性质可知,为等边三角形,故选A【考点】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB5、B【解析】【分析】根据轴对称图形和中心对称图形的概念去判断即可【详解】A、既不是轴对称图形也不是中心对称图形,故不满足题意;B、是轴对

    11、称图形也是中心对称图形,故满足题意;C、既不是轴对称图形也不是中心对称图形,故不满足题意;D、既不是轴对称图形也不是中心对称图形,故不满足题意;故选:B【考点】本题考查了轴对称图形和中心对称图形,关键是紧扣轴对称图形和中心对称图形的概念6、D【解析】【分析】根据六边形ABCDEF的内角都相等,DAB=60,平行线的判定,平行四边形的判定,中心对称图形的定义一一判断即可【详解】六边形ABCDEF的内角都相等,EFA=FED=FAB=ABC=120DAB=60,DAF=60,EFA+DAF=180,DAB+ABC=180,ADEFCB,故正确,FED+EDA=180,EDA=ADC=60,EDA=

    12、DAB,ABDE,故正确FAD=EDA,CDA=BAD,EFADBC,四边形EFAD,四边形BCDA是等腰梯形,AF=DE,AB=CDAB=DE,AF=CD,故正确,连接CF与AD交于点O,连接DF、AE、DB、BECDA=DAF,AFCD,AF=CD,四边形ACDF是平行四边形,故正确,同法可证四边形AEDB是平行四边形,AD与CF,AD与BE互相平分,OF=OC,OE=OB,OA=OD,六边形ABCDEF是中心对称图形,且是轴对称,故正确故选D【考点】本题考查了平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型

    13、7、B【解析】【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意故选:B【考点】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合8、B【解析】【分析】根据含30角的直角三角形的性质可得B(2,2+2),利用待定系数法可得直线PB的解析式,依次将M1,

    14、M2,M3,M4四个点的一个坐标代入y=x+2中可解答【详解】解:点A(4,2),点P(0,2),PAy轴,PA=4,由旋转得:APB=60,AP=PB=4,如图,过点B作BCy轴于C,BPC=30,BC=2,PC=2,B(2,2+2),设直线PB的解析式为:y=kx+b,则,直线PB的解析式为:y=x+2,当y=0时,x+2=0,x=-,点M1(-,0)不在直线PB上,当x=-时,y=-3+2=1,M2(-,-1)在直线PB上,当x=1时,y=+2,M3(1,4)不在直线PB上,当x=2时,y=2+2,M4(2,)不在直线PB上故选:B【考点】本题考查的是图形旋转变换,待定系数法求一次函数的

    15、解析式,确定点B的坐标是解本题的关键9、A【解析】【分析】对应点连线的垂直平分线的交点即为旋转中心,然后直接写成坐标即可【详解】解:如图点O即为旋转中心,坐标为O(1,1) 故选:A【考点】本题主要考查了旋转中心的确定方法,熟练掌握对应点连线的垂直平分线的交点即为旋转中心是解题的关键10、B【解析】【分析】根据A(x,y)在第二象限内可以判断x,y的符号,再根据|x|=2,|y|=3就可以确定点A的坐标,进而确定点A关于原点的对称点的坐标【详解】A(x,y)在第二象限内,x0 y0,又|x|=2,|y|=3,x=-2, y=3,点A关于原点的对称点的坐标是(2,-3)故选:B【考点】本题考查了

    16、关于原点对称的点的坐标,由点所在的象限能判断出坐标的符号,同时考查了关于原点对称的点坐标之间的关系,难度一般二、填空题1、30【解析】【分析】设AO与BC的交点为点G,根据等腰直角三角形的性质证AOCBOD,进而得出ABC是直角三角形,设ACx,BC=x+7,由勾股定理求出x,再计算ABC的面积即可【详解】解:设AO与BC的交点为点G,AOBCOD90,AOCDOB,在AOC和BOD中,AOCBOD(SAS),ACBD,CAODBO,DBOOGB90,OGBAGC,CAOAGC90,ACG90,CGAC,设ACx,则BD=AC=x,BC=x+7,BD、CD在同一直线上,BDAC,ABC是直角三

    17、角形,AC2BC2AB2,,解得x=5,即AC=5,BC=5+7=12,在直角三角形ABC中,S= ,故答案为:30【考点】本题考查旋转的性质、全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题2、【解析】【分析】根据题意求出:,的坐标,推导出每旋转8次为一个循环,再由,求出对应的点坐标即可【详解】解:根据题意得:, ,可推导一般性规律:点坐标的变化每旋转8次为一个循环, ,的坐标是 故答案为:【考点】本题主要考查了图形的旋转,点坐标的规律探究解题的关键在于推导出一般性规律3、【解析】【分析】根据同心圆的个数以及每条射线所

    18、形成的角度,以及A,B点坐标特征找到规律,即可求得C点坐标【详解】解:图中为5个同心圆,且每条射线与x轴所形成的角度已知,、的坐标分别表示为、,根据点的特征,所以点的坐标表示为;故答案为:【考点】本题考查坐标与旋转的规律性问题,熟练掌握旋转性质,并找到规律是解题的关键4、【解析】【分析】延长AM到F,使AM=MF,连接BF,证AEMFBM,得AE=FB,AEM=FBM,ABC绕着点A逆时针旋转90得到ADE,得AB=AD,CAE=BAD=90,再证AC=BF,CAD=ABF,得BFAACD,即可得答案【详解】解: 如上图:延长AM到F,使AM=MF,M是BE的中点,BM=EM,AME=FMB,

    19、AEMFBM,AE=FB,AEM=FBM,ABC绕着点A逆时针旋转90得到ADE,AB=AD,AC= AE,CAE=BAD=90,AC=BF,CAD=90-EAD,ABF=ABM+FBM=ABM+AEM=180-BAE=180-(BAD+EAD)=180-90-EAD=90-EAD,CAD=ABF,在BFA和ACD中,BFAACD, FA=CD,AM=,CD= FA= 2 AM =2,故答案为:2【考点】本题考查旋转的性质,三角形全等的判定与性质,解题的关键是延长AM到F,使AM=MF,证BFAACD5、(2,2)【解析】【分析】过点A作AEx轴于E,过点B作BFx轴于F利用全等三角形的性质解

    20、决问题即可【详解】解:如图,过点A作AEx轴于E,过点B作BFx轴于FAECACBCFB90,ACE+BCF90,BCF+B90,ACEB,在AEC和CFB中,AECCFB(AAS),AECF,ECBF,A(3,3),C(1,0),AECF3,OC1,ECBF2,OFCFOC2,B(2,2),故答案为:(2,2)【考点】本题考查坐标与图形变化旋转,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题三、解答题1、 (1),理由见解析(2);或【解析】【分析】(1)由,可知,由平分,可知,进而可证;(2)由,可知,进而得,由此可求出结果;由以及,结合题意可分两种情

    21、况:当在直线上方时,或当在直线下方时,将两种情况分别进行讨论求解即可(1),理由如下:,平分,;(2);,的值为,(I)如图3-1,当在直线上方时, , 直角三角板绕点O按每秒的速度旋转,;(II)解法一:如图3-2,当在直线下方时, 直角三角板绕点O旋转的角度为, 直角三角板绕点O按每秒的速度逆时针旋转,解法二:如图3-3,在()的基础上,继续将直角三角板绕点O按每秒的速度逆时针旋转,得到直角三角板,此时,直角三角板绕点O旋转的角度为,直角三角板绕点O按每秒的速度逆时针旋转,综合()()得:或【考点】本题考查旋转问题,角平分线的性质,以及角的互相转换,能够掌握数形结合思想是解决本题的关键2、

    22、(1)证明过程见解析;(2)BF=2-2【解析】【分析】(1)根据ABCADE得出AE=AD,BAC=DAE,从而得出CAE=DAB,根据SAS判定定理得出三角形全等;(2)根据菱形的性质得出DBA=BAC=45,根据AB=AD得出ABD是直角边长为2的等腰直角三角形,从而得出BD=2,根据菱形的性质得出AD=DF=FC=AC=AB=2,最后根据BF=BD-DF求出答案【详解】解析:(1)ABCADE且AB=AC, AE=AD,AB=AC, BAC+BAE=DAE+BAE, CAE=DAB,AECADB(3)四边形ADFC是菱形且BAC=45,DBA=BAC=45, 由(1)得AB=AD,DB

    23、A=BDA=45 ,ABD是直角边长为2的等腰直角三角形, BD=2,又四边形ADFC是菱形, AD=DF=FC=AC=AB=2, BF=BD-DF=2-2【考点】考点:(1)三角形全等的性质与判定;(2)菱形的性质3、 (1)见解析;(2),理由见解析【解析】【分析】(1)由题意,画出图形即可;连接AQ,证四边形ABPQ是平行四边形,得ABPC,再根据是等腰三角形即可求解(2)令,延长PM至N,使得MNPM,连接BN、AN、QN,证四边形BNQP是矩形,根据证,得出为等腰直角三角形,即可求解(1)如图所示,即为所求,连接AQ,如图所示,M为AP、BQ的中点,AM=PM,BM=QM,四边形AB

    24、PQ是平行四边形,ABPQ,AB/PQ,PC=PQ,ABPC,为等腰直角三角形,(2),延长PM至N,使得MNPM,连接BN、AN、QN,如图所示:M为线段BQ的中点,BM=QM,又MNPM,四边形BNQP是平行四边形,又CPQ=90,四边形BNQP是矩形,为等腰直角三角形,即,又AB=AC,即,即为等腰直角三角形,又,即的值为定值,当时,的值为定值【考点】本题是几何变换综合题,考查了等腰直角三角形、平行四边形的判定及性质、旋转的性质以及全等三角形的判定及性质,熟练利用辅助线构造平行四边形是解题的关键4、(1);(2);(3)【解析】【分析】(1)连接OB,由,O为BC的中点,得到,则,再由旋

    25、转的性质可得,由此求解即可;(2)连接,由(1)可知(因为也是旋转角),由旋转的性质可得,则,可以得到,再由可以得到,由此即可求解;连接OB,OE延长OM交EF于N,由得,由旋转的性质可得,然后证明,得到,则,再证明OBMNEM得到,从而推出MN为BFE的中位线,得到,则;(3)连接与BF交于H,由,可得,由含30度角的直角三角形的性质可以得到,再由勾股定理可以得到,由此即可得到答案【详解】解:(1)如图所示,连接OB,O为BC的中点,将点O沿BC翻折得到点,由旋转的性质可得,旋转角为,故答案为:;(2)如图所示,连接,由(1)可知(因为也是旋转角),由旋转的性质可得,故答案为:;如图所示,连

    26、接OB,OE延长OM交EF于N,由得,由旋转的性质可得,M为BE的中点,在OBM和NEM中,OBMNEM(SAS),N为EF的中点,MN为BFE的中位线,;(3)如图所示,连接与BF交于H,故答案为:【考点】本题主要考查了旋转的性质,等腰三角形的性质与判定,直角三角形斜边上的中线,三角形中位线定理,含30度角的直角三角形的性质,勾股定理,平行线的性质与判定等等,解题的关键在于能够熟练掌握旋转的性质5、(1);(2)证明见解析;(3)点P在过点B且与AB垂直的直线上,;(4)【解析】【分析】(1)作BDx轴,与x轴交于D,利用等边三角形的性质和勾股定理即可解得;(2)根据等边三角形的性质可得两组

    27、对应边相等,再结合角的和差可得BAP=OAC,再利用SAS可证得全等;(3)由(2)可知PBAB,由此可得P的运动轨迹,再求得AB的解析式,根据垂直的两条直线的一次项系数互为负倒数设BP的解析式,将B点坐标代入即可求得解析式;(4)利用两点之间距离公式求得P点坐标,再利用勾股定理求得BP,结合(2)可知OC=BP,由此可得C点坐标【详解】解:(1)A(0,2),OA=2,过点B作BDx轴,OAB为等边三角形,OA=2,OB=OA=2,OD=1,即,故答案为:;(2)证明:OAB和ACP为等边三角形,AC=AP,AB=OA,CAP=OAB=60,BAP=OAC,(SAS);(3)如上图,ABP=AOC=90,点P在过点B且与AB垂直的直线上设直线AB的解析式为:,则,解得:,设直线BP的解析式为:,则,解得,故;(4)设 ,OP=OB,解得:,(舍去),故此时,点A、C、P按逆时针方向排列,故答案为:【考点】本题考查求一次函数解析式,勾股定理,全等三角形的性质和判定,等边三角形的性质解题的关键是正确寻找全等三角形解决问题

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年人教版九年级数学上册第二十三章旋转专项攻克试卷(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-635352.html
    相关资源 更多
  • 专题提升Ⅳ 带电粒子在组合场中的运动(解析版).docx专题提升Ⅳ 带电粒子在组合场中的运动(解析版).docx
  • 专题提升Ⅳ 带电粒子在组合场中的运动(原卷版).docx专题提升Ⅳ 带电粒子在组合场中的运动(原卷版).docx
  • 专题提升Ⅲ 带电粒子在有界匀强磁场中的运动(解析版).docx专题提升Ⅲ 带电粒子在有界匀强磁场中的运动(解析版).docx
  • 专题提升08 传染病和免疫.docx专题提升08 传染病和免疫.docx
  • 专题提升07 生物进化.docx专题提升07 生物进化.docx
  • 专题提升05 生物的生殖和发育.docx专题提升05 生物的生殖和发育.docx
  • 专题提升03  绿色植物.docx专题提升03  绿色植物.docx
  • 专题提升01 生态系统.docx专题提升01 生态系统.docx
  • 专题提升(一) 古代中国的政治制度(word教参)-2023高考历史(专题史)一轮复习【优化指导】高中总复习·第1轮(全国版).docx专题提升(一) 古代中国的政治制度(word教参)-2023高考历史(专题史)一轮复习【优化指导】高中总复习·第1轮(全国版).docx
  • 专题提升 解直角三角形的实际应用(30题)(解析版).docx专题提升 解直角三角形的实际应用(30题)(解析版).docx
  • 专题提升 解直角三角形的实际应用(30题)(原卷版).docx专题提升 解直角三角形的实际应用(30题)(原卷版).docx
  • 专题提升 相似三角形的判定与性质(30题)(解析版).docx专题提升 相似三角形的判定与性质(30题)(解析版).docx
  • 专题提升 相似三角形的判定与性质(30题)(原卷版).docx专题提升 相似三角形的判定与性质(30题)(原卷版).docx
  • 专题提升 实际问题与反比例函数及其综合应用(30题)(原卷版).docx专题提升 实际问题与反比例函数及其综合应用(30题)(原卷版).docx
  • 专题技巧二 动量守恒与能量守恒综合问题-2021-2022学年高二物理精讲与精练高分突破考点专题系列(人教版2019选择性必修第一册).docx专题技巧二 动量守恒与能量守恒综合问题-2021-2022学年高二物理精讲与精练高分突破考点专题系列(人教版2019选择性必修第一册).docx
  • 专题归类复习四 时态.docx专题归类复习四 时态.docx
  • 专题归类复习二 宾语从句.docx专题归类复习二 宾语从句.docx
  • 专题归类复习三 定语从句.docx专题归类复习三 定语从句.docx
  • 专题归类复习一 连词与并列句、状语从句.docx专题归类复习一 连词与并列句、状语从句.docx
  • 专题强化训练(六)基本不等式求最值-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(六)基本不等式求最值-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练(五)函数应用问题-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(五)函数应用问题-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练(二)分类讨论思想-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(二)分类讨论思想-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练(九)图像变换及应用-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(九)图像变换及应用-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练(三)复合函数问题-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(三)复合函数问题-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练(七)三角函数的化简-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(七)三角函数的化简-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练(一)二次函数在给定区间上最值问题-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(一)二次函数在给定区间上最值问题-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练二 解分式方程的和实际应用问题-2022-2023学年八年级数学上册《考点•题型•技巧》精讲与精练高分突破(人教版).docx专题强化训练二 解分式方程的和实际应用问题-2022-2023学年八年级数学上册《考点•题型•技巧》精讲与精练高分突破(人教版).docx
  • 专题强化训练二 等比数列性质和求和常考重难点强化精选必刷题-2022-2023学年高二数学《考点•题型 •技巧》精讲与精练高分突破系列(人教A版2019选择性必修第二册).docx专题强化训练二 等比数列性质和求和常考重难点强化精选必刷题-2022-2023学年高二数学《考点•题型 •技巧》精讲与精练高分突破系列(人教A版2019选择性必修第二册).docx
  • 专题强化训练二 空间向量在点线面距离、存在性问题的应用-2022-2023学年高二数学《考点•题型 •技巧》精讲与精练高分突破系列(人教A版2019选择性必修第一册).docx专题强化训练二 空间向量在点线面距离、存在性问题的应用-2022-2023学年高二数学《考点•题型 •技巧》精讲与精练高分突破系列(人教A版2019选择性必修第一册).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1