分享
分享赚钱 收藏 举报 版权申诉 / 17

类型2022-2023学年人教版八年级数学上册第十五章分式专项练习试卷(含答案详解版).docx

  • 上传人:a****
  • 文档编号:636347
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:17
  • 大小:271.01KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 人教版 八年 级数 上册 第十五 分式 专项 练习 试卷 答案 详解
    资源描述:

    1、人教版八年级数学上册第十五章分式专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、计算的结果是( )ABCD2、已知x3是分式方程的解,那么实数k的值为()A1B0C1D23、已知m2n2nm2,则

    2、的值是()A1B0C1D4、某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务,若设原计划每周生产x万个口罩,则可列方程为()ABCD5、我国古代著作四元玉鉴记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽每株脚钱三文足,无钱准与一株椽“其大意为:现请人代买一批椽,这批椽的价钱为6210文如果每件椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为株,则符合题意的方程是()ABCD6、已知关于x的分式方程=1的解是负数,则m的取值范围是()Am3Bm3且m2C

    3、m3Dm3且m27、分式方程的解是()A0B2C0或2D无解8、若,则下列等式不成立的是()ABCD9、方程的解为()Ax=1Bx=0Cx=Dx=110、关于x的分式方程30有解,则实数m应满足的条件是()Am2Bm2Cm2Dm2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若,则_2、计算_3、若关于x的分式方程有正整数解,则整数m为 _4、函数y=中,自变量x的取值范围是_5、如果分式有意义,那么的取值范围是_三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:,其中满足2、计算:(1)()3()2(2)()3、中国是最早发现并利用茶的国家,形成了具

    4、有独特魅力的茶文化2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?4、(1)因式分解:;

    5、(2)解方程:5、计算:(要求(4)利用乘法公式计算)(1)(2)(3)(4)-参考答案-一、单选题1、A【解析】【分析】直接利用分式的加减运算法则计算得出答案【详解】原式,故选:A【考点】本题考查分式的加减运算法则,比较基础2、D【解析】【详解】解:将x=3代入,得:,解得:k=2,故选D3、C【解析】【详解】分析:首先进行移项,然后转化为两个完全平方式,根据非负数的性质求出m和n的值,然后代入所求的代数式得出答案详解:,解得:m=2,n=2,故选C点睛:本题主要考查的是非负数的性质以及代数式的求值,属于中等难度的题型将代数式转化为两个完全平方式是解决这个问题的关键4、A【解析】【分析】根据

    6、第一周之后,按原计划的生产时间提速后生产时间+1,可得结果【详解】由题知:故选:A【考点】本题考查了分式方程的实际应用问题,根据题意列出方程式即可5、A【解析】【分析】根据“这批椽的价钱为6210文”、“每件椽的运费为3文,剩下的椽的运费恰好等于一株椽的价钱”列出方程解答【详解】解:由题意得:,故选A.【考点】本题考查了分式方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,准确的找到等量关系并用方程表示出来是解题的关键6、D【解析】【分析】解方程得到方程的解,再根据解为负数得到关于m的不等式结合分式的分母不为零,即可求得m的取值范围.【详解】=1,

    7、解得:x=m3,关于x的分式方程=1的解是负数,m30,解得:m3,当x=m3=1时,方程无解,则m2,故m的取值范围是:m3且m2,故选D【考点】本题考查了分式方程的解,熟练掌握分式方程的解法以及分式方程的分母不为零是解题关键7、D【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】去分母得,解得,经检验是增根,则分式方程无解故选:D【考点】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验8、D【解析】【分析】设,则、,分别代入计算即可【详解】解:设,则、,A,成立,不符合题意;B,成立,不符合题意;C. ,成立,不符合题意

    8、;D. ,不成立,符合题意;故选:D【考点】本题考查了等式的性质,解题关键是通过设参数,得到x、y、z的值,代入判断9、D【解析】【详解】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解详解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选D点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验10、B【解析】【分析】解分式方程得:即,由题意可知,即可得到.【详解】解:方程两边同时乘以得:,分式方程有解,故选B.【考点】本题主要考查了分式方程的解,熟练掌握分式方程的解法,理解分式方程有意义的条件是解题的关键.二、填空题

    9、1、1【解析】【分析】根据绝对值的非负性和二次根式的非负性得出a,b的值,即可求出答案【详解】,故答案为:1【考点】本题考查了绝对值的非负性,二次根式的非负性,整数指数幂,得出a,b的值是解题关键2、【解析】【分析】根据分式的运算法则计算即可【详解】解:,故答案为:【考点】此题主要考查分式的运算,解题的关键是熟知其运算法则3、0【解析】【分析】先解分式方程,再根据有正整数解及分母不为0进行求解即可【详解】方程两边同乘,得解得分式方程有正整数解即即故答案为:0【考点】本题考查解分式方程及分式方程正整数根的情况,注意分母不等于0是解题的关键4、x1【解析】【分析】根据分式中分母不等于0列式求解即可

    10、.【详解】解:根据题意得, x-10,解得x1.故答案为: x1.【考点】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5、且#x-3且x1【解析】【分析】根据分式有意义的条件,零指数幂的运算法则列不等式求解【详解】解:由题意可得:,且,故答案为:且【考点】本题考查分式有意义的条件,零指数幂的运算,解题的关键是掌握分式有意义的条件(分母不能为零),三、解答题1、2a2+4a,6【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利

    11、用除法法则变形,约分得到最简结果,再代值计算即可求出值【详解】解:原式=2a(a+2)=2a2+4a.,a2+2a=3.原式=2(a2+2a)=6.【考点】此题主要考查了分式的化简求值,正确化简分式是解题关键2、(1);(2)【解析】【分析】(1)先计算乘方、将除法转化为乘法,再约分即可得;(2)先计算括号内异分母分式的减法、除法转化为乘法,再约分即可得【详解】解:(1)原式();(2)原式【考点】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则3、(1)A,B两种茶叶每盒进价分别为200元,280元;(2)第二次购进A种茶叶40盒,B种茶叶60盒【解析】【分析】(1)

    12、设A种茶叶每盒进价为元,则B种茶叶每盒进价为元,根据“4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒”列出分式方程解答,并检验即可;(2)设第二次A种茶叶购进盒,则B种茶叶购进盒,根据题意,表达出打折前后,A,B两种茶叶的利润,列出方程即可解答【详解】解:(1)设A种茶叶每盒进价为元,则B种茶叶每盒进价为元根据题意,得解得经检验:是原方程的根(元)A,B两种茶叶每盒进价分别为200元,280元(2)设第二次A种茶叶购进盒,则B种茶叶购进盒打折前A种茶叶的利润为B种茶叶的利润为打折后A种茶叶的利润为B种茶叶的利润为0由题意得:解方程,得:(盒)第二

    13、次购进A种茶叶40盒,B种茶叶60盒【考点】本题考查了分式方程及一元一次方程的实际应用问题,解题的关键是设出未知数,找出等量关系,列出方程,并注意分式方程一定要检验4、(1);(2)x=4【解析】【分析】(1)先提取公因式,再利用完全平方公式进行分解因式,即可;(2)通过去分母,合并同类项移项,未知数系数化为1,检验,即可求解【详解】解:(1)原式=;(2),去分母得:,即:,解得:x=4,经检验:x=4是方程的解【考点】本题主要考查分解因式,解分式方程,掌握提取公因式和完全平方公式以及取去分母,是解题的关键5、(1);(2);(3);(4)【解析】【分析】(1)先运用幂的乘方运算法则化简,再结合幂的乘除运算法则求解即可;(2)根据单项式的乘除运算法则求解即可;(3)利用幂的相关运算法则化简,再结合有理数的运算法则求解即可;(4)利用平方差公式进行简便计算即可【详解】解:(1)原式(2)原式(3)原式(4)原式【考点】本题考查幂的混合运算,单项式乘除法的混合运算,以及利用乘法公式进行简便计算等,掌握基本的运算法则,以及运算顺序是解题关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年人教版八年级数学上册第十五章分式专项练习试卷(含答案详解版).docx
    链接地址:https://www.ketangku.com/wenku/file-636347.html
    相关资源 更多
  • 专题27 函数单调性含参问题的研究(教师版).docx专题27 函数单调性含参问题的研究(教师版).docx
  • 专题27 函数单调性含参问题的研究(学生版).docx专题27 函数单调性含参问题的研究(学生版).docx
  • 专题27 倍长中线模型(解析版).docx专题27 倍长中线模型(解析版).docx
  • 专题27 倍长中线模型(原卷版).docx专题27 倍长中线模型(原卷版).docx
  • 专题27 以图形为背景的两角差的正切-2022年高考数学优拔尖必刷压轴题(选择题、填空题)(新高考地区专用).docx专题27 以图形为背景的两角差的正切-2022年高考数学优拔尖必刷压轴题(选择题、填空题)(新高考地区专用).docx
  • 专题27 以图形为背景的两角和与差的正切-2023年高考数学优拔尖核心压轴题(选择、填空题)(新高考地区专用).docx专题27 以图形为背景的两角和与差的正切-2023年高考数学优拔尖核心压轴题(选择、填空题)(新高考地区专用).docx
  • 专题27 二次函数与平行四边形存在问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版).docx专题27 二次函数与平行四边形存在问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版).docx
  • 专题27 二次函数与平行四边形存在问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版) .docx专题27 二次函数与平行四边形存在问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版) .docx
  • 专题27 不等式组-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(解析版).docx专题27 不等式组-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(解析版).docx
  • 专题27 不等式组-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(原卷版).docx专题27 不等式组-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(原卷版).docx
  • 专题27 三角形的内切圆(提优)-冲刺2021年中考几何专项复习(解析版).docx专题27 三角形的内切圆(提优)-冲刺2021年中考几何专项复习(解析版).docx
  • 专题27 三角形的内切圆(提优)-冲刺2021年中考几何专项复习(原卷版).docx专题27 三角形的内切圆(提优)-冲刺2021年中考几何专项复习(原卷版).docx
  • 专题27 三角形的内切圆(基础)-冲刺2021年中考几何专项复习(解析版).docx专题27 三角形的内切圆(基础)-冲刺2021年中考几何专项复习(解析版).docx
  • 专题27 8BU3-2023年牛津译林版初中英语单元知识点一遍过(江苏专用).docx专题27 8BU3-2023年牛津译林版初中英语单元知识点一遍过(江苏专用).docx
  • 专题27直线与圆的位置关系-【中职专用】中职高考数学二轮复习专项突破.docx专题27直线与圆的位置关系-【中职专用】中职高考数学二轮复习专项突破.docx
  • 专题27 法拉第电磁感应定律(解析版).docx专题27 法拉第电磁感应定律(解析版).docx
  • 专题27 法拉第电磁感应定律(原卷版).docx专题27 法拉第电磁感应定律(原卷版).docx
  • 专题26数据的收集与整理-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期).docx专题26数据的收集与整理-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期).docx
  • 专题26数据的收集与整理-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期).docx专题26数据的收集与整理-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期).docx
  • 专题26平面几何B辑(教师版含解析)备战2021年高中数学联赛之1981-2020年高中数学联赛二试试题分专题训练.docx专题26平面几何B辑(教师版含解析)备战2021年高中数学联赛之1981-2020年高中数学联赛二试试题分专题训练.docx
  • 专题26平面几何B辑(学生版)备战2021年高中数学联赛之1981-2020年高中数学联赛二试试题分专题训练.docx专题26平面几何B辑(学生版)备战2021年高中数学联赛之1981-2020年高中数学联赛二试试题分专题训练.docx
  • 专题26圆周运动.docx专题26圆周运动.docx
  • 专题26以旋转为载体的几何综合问题 -挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(解析版).docx专题26以旋转为载体的几何综合问题 -挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(解析版).docx
  • 专题26以旋转为载体的几何综合问题 -挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx专题26以旋转为载体的几何综合问题 -挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx
  • 专题26二次函数与线段周长压轴问题-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(原卷版).docx专题26二次函数与线段周长压轴问题-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(原卷版).docx
  • 专题26 数据的分析.docx专题26 数据的分析.docx
  • 专题26.9 反比例函数与面积问题(巩固篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(人教版).docx专题26.9 反比例函数与面积问题(巩固篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(人教版).docx
  • 专题26.8 反比例函数与面积问题(基础篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(人教版).docx专题26.8 反比例函数与面积问题(基础篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(人教版).docx
  • 专题26.7 反比例函数(全章直通中考)(培优练)-2023-2024学年九年级数学下册全章复习与专题突破讲与练(人教版).docx专题26.7 反比例函数(全章直通中考)(培优练)-2023-2024学年九年级数学下册全章复习与专题突破讲与练(人教版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1