2022-2023学年度京改版八年级数学上册第十一章实数和二次根式单元测评试题.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年度 改版 八年 级数 上册 第十一 实数 二次 根式 单元 测评 试题
- 资源描述:
-
1、八年级数学上册第十一章实数和二次根式单元测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列二次根式中,最简二次根式是()ABCD2、下列等式成立的是()ABCD3、下列各式中正确的是()ABCD4、
2、若,则a,b,c的大小关系为()ABCD5、如图,数轴上的点A,B,O,C,D分别表示数-2,-1,0,1,2,则表示数的点P应落在A线段AB上B线段BO上C线段OC上D线段CD上6、若,则x的值等于()A4BC2D7、下列四种叙述中,正确的是()A带根号的数是无理数B无理数都是带根号的数C无理数是无限小数D无限小数是无理数8、计算:()A4B5C6D89、在四个实数,0,中,最小的实数是()AB0CD10、有下列说法:无理数是无限小数,无限小数是无理数;无理数包括正无理数、和负无理数;带根号的数都是无理数;无理数是含有根号且被开方数不能被开尽的数;是一个分数其中正确的有()A个B个C个D个第
3、卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、 _, _2、如图,在纸面上有一数轴,点A表示的数为1,点B表示的数为3,点C表示的数为若子轩同学先将纸面以点B为中心折叠,然后再次折叠纸面使点A和点B重合,则此时数轴上与点C重合的点所表示的数是_3、若,则_4、125的立方根是_的算术平方根是_5、一个正数的两个平方根的和是_,商是_三、解答题(5小题,每小题10分,共计50分)1、设、是任意两个有理数,规定与之间的一种运算“”为:(1)求的值;(2)若,求的值.2、化简求值:,其中3、数学教育家波利亚曾说:“对一个数学问题,改变它的形式,变换它的结构,直到发现有价值的东
4、西,这是数学解题的一个重要原则”材料一:把根式进行化简,若能找到两个数m、n,是且,则把变成,开方,从而使得化简例如:化简解:材料二:在直角坐标系xOy中,对于点P(x,y)和Q(x,y)给出如下定义:若,则称Q点为P点的“横负纵变点”例如点(3,2)的“横负纵变点”为(3,2),点(,5)的“横负纵变点”为(,)请选择合适的材料解决下面的问题:(1)点(,)的“横负纵变点”为_;(2)化简:;(3)已知a为常数(),点M(,m)且,点M是点M的“横负纵变点”,求点M的坐标4、5、计算:(1)(2) (3)(4)(5)(6)-参考答案-一、单选题1、A【解析】【分析】根据最简二次根式的被开方数
5、不含分母,被开方数不含开得尽的因数或因式,可得答案【详解】解:A. ,是最简二次根式,故正确;B. ,不是最简二次根式,故错误;C. ,不是最简二次根式,故错误;D. ,不是最简二次根式,故错误.故选A.【考点】本题考查了最简二次根式,最简二次根式的被开方数不含分母,被开方数不含开得尽的因数或因式2、D【解析】【分析】根据算术平方根、立方根、二次根式的化简等概念分别判断【详解】解:A. ,本选项不成立;B. ,本选项不成立;C. =,本选项不成立;D. ,本选项成立.故选:D.【考点】本题考查了二次根式的化简与性质,正确理解二次根式有意义的条件、算术平方根的计算等知识点是解答问题的关键3、C【
6、解析】【分析】根据二次根式的性质化简即可【详解】解:A、,故本选项错误;B、,故本选项错误;C、,故本选项正确;D、|a|,故本选项错误;故选:C【考点】此题考查了二次根式的性质,掌握基本性质是解题的关键4、C【解析】【分析】根据无理数的估算进行大小比较【详解】解:,又,故选:C【考点】本题考查求一个数的算术平方根,求一个数的立方根及无理数的估算,理解相关概念是解题关键5、B【解析】【分析】根据被开方数越大算术平方根越大,可得的范围,根据不等式的性质,可得答案【详解】由被开方数越大算术平方根越大,得23,由不等式的性质得:-12-0.故选B.【考点】本题考查了实数与数轴,无理数大小的估算,解题
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-639230.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
