分享
分享赚钱 收藏 举报 版权申诉 / 19

类型2022-2023学年度京改版八年级数学上册第十章分式单元测评练习题(含答案详解).docx

  • 上传人:a****
  • 文档编号:639637
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:19
  • 大小:249.32KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年度 改版 八年 级数 上册 第十 分式 单元 测评 练习题 答案 详解
    资源描述:

    1、京改版八年级数学上册第十章分式单元测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙两人骑自行车从相距60千米的A、B两地同时出发,相向而行,甲从A地出发至2千米时,想起有东西忘在A地,即返回去取

    2、,又立即从A地向B地行进,甲、乙两人恰好在AB中点相遇,已知甲的速度比乙的速度每小时快2.5千米,求甲、乙两人的速度,设乙的速度是x千米/小时,所列方程正确的是()ABCD2、若关于x的分式方程有增根,则m的值是()A1B1C2D23、已知 ,则 的值是()ABC2D-24、某农场挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么下列方程正确的是()ABCD5、九章算术中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天,如果用快马送,所需的时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间设规

    3、定时间为x天,则可列方程为()ABCD6、若分式的值为零,则的值为()A-3B-1C3D7、若分式 的值为0,则x 的值是()A2B0C-2D-58、方程的解为()Ax3Bx4Cx5Dx59、下列式子:,其中分式有()A1个B2个C3个D4个10、的结果是()ABCD1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:_2、(1)_;(2)_;(3)_;(4)_3、已知ab4,a+b3,则_4、若方程的解使关于的不等式成立,则实数的取值范围是_5、若方程的根为负数,则k的取值范围是_。三、解答题(5小题,每小题10分,共计50分)1、已知(1)若,则_,_;(2)若

    4、,求的值;(3)若,求的最小值2、(1)下面是小颖同学解分式方程1的过程请认真阅读并完成相应的任务解:方程两边同乘 ,得x2x12x(x3) 第一步去括号,得x2x12x23x 第二步移项、合并同类项,得4x12. 第三步解得x3. 第四步第一步中“ ”处应为 ,这一步的目的是 其依据是 ;小颖在反思上述解答过程时发现缺少了一步请你补全这一步,并说明这一步不能缺少的理由(2)新概念运用:运符号“”,称为二阶行列式,规定它的运算法则为:adbc,请你根据上述规定,求出下列等式中x的值:13、化简:(1)4、解下列分式方程:(1)(2)5、解方程:(1)(2)-参考答案-一、单选题1、D【解析】【

    5、分析】乙的速度是x千米/小时,则甲的速度为(x+2.5)千米/小时,中点相遇,乙走30千米,甲走34千米,利用时间相等列出方程即可【详解】设乙的速度是x千米/小时,则甲的速度为(x+2.5)千米/小时,中点相遇,乙走30千米,甲走34千米,根据时间相等,得,故选D【考点】本题考查了分式方程的应用题,正确理解题意,根据相遇时间相等列出方程是解题的关键2、C【解析】【分析】先把分式方程化为整式方程,再把增根x=2代入整式方程,即可求解【详解】解:,去分母得:,关于x的分式方程有增根,增根为:x=2,即:m=2,故选C【考点】本题主要考查解分式方程以及分式方程的增根,把分式方程化为整式方程是解题的关

    6、键3、C【解析】【分析】将条件变形为,再代入求值即可得解【详解】解:,故选:C【考点】本题主要考查了分式的化简,将条件变形为是解答本题的关键4、A【解析】【分析】设原计划每天挖x米,则实际每天挖(x+20)米,由题意可得等量关系:原计划所用时间-实际所用时间=4,根据等量关系列出方程即可【详解】解:设原计划每天挖x米,原计划所用时间为,实际所用时间为,依题意得:,故选:A【考点】本题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程5、A【解析】【分析】根据题意先求得快马的速度和慢马的速度,根据快马的速度是慢马的2倍列分式方程即可【详解】设规定时间为x天,

    7、慢马的速度为,快马的速度为,则故选A【考点】本题考查了分式方程的应用,根据题意找到等量关系是解题的关键6、A【解析】【分析】根据分式的值为零的条件即可求出答案【详解】解:由题意可知:解得:x=-3,故选:A【考点】本题考查分式的值,解题的关键是熟练运用分式的值为零的条件7、A【解析】【分析】根据分式的值为0的条件:分子为0且分母不为0,得出混合组,求解得出x的值【详解】解: 根据题意得 :x-2=0,且x+50,解得 x=2故选:A【考点】本题考查了分式的值为零的条件分式值为零的条件是分子等于零且分母不等于零8、C【解析】【详解】方程两边同乘(x-1)(x+3),得x+3-2(x-1)=0,解

    8、得:x=5,检验:当x=5时,(x-1)(x+3)0,所以x=5是原方程的解,故选C.9、B【解析】【分析】根据分母中含有字母的式子是分式,可得答案【详解】解:,的分母中含有字母,属于分式,共有2个故选:B【考点】本题考查了分式的定义,熟悉相关性质,注意是常数,是解题的关键10、B【解析】【分析】先计算分式的乘方,再把除法转换为乘法,约分后即可得解【详解】解:故选:B【考点】此题主要考查了分式的混合运算,熟练掌握运算法则是解答此题的关键二、填空题1、2【解析】【分析】分式分母相同,直接加减,最后约分【详解】解:【考点】本题考查了分式的加减,掌握同分母分式的加减法法则是解决本题的关键2、 【解析

    9、】【分析】根据分式乘方的运算法则计算即可;【详解】解:(1),(2)(3),(4),故答案为:,【考点】本题考查了分式的乘方,熟练掌握运算法则是解题的关键3、【解析】【分析】先通分:,然后再代入数据即可求解【详解】解:由题意可知:,故答案为:【考点】本题考查了分式的加减运算及求值,属于基础题,计算过程中细心即可4、【解析】【分析】先解分式方程得,再把代入不等式计算即可【详解】去分母得:解得:经检验,是分式方程的解把代入不等式得:解得故答案为:【考点】本题综合考查分式方程的解法和一元一次不等式的解法,解题的关键是熟记相关运算法则5、k2且k3【解析】【分析】方程两边都乘以(x+3)(x+k),化

    10、成整式方程,然后解关于x的一元一次方程,再根据解是负数得到关于k的一元一次不等式,解不等式即可,再根据分式方程的分母不等于0求出x-3,列式求出k的值,然后联立即可得出答案【详解】解:方程两边都乘以(x+3)(x+k)得,3(x+k)=2(x+3),解得x=-3k+6,方程的解是负数,-3k+60,解得k2,又x+30,x+k0,x-3,x-k-3k+6-3, -3k+6-kk3,k2且k3故答案为:k2且k3【考点】本题考查了分式方程的解的应用,以及一元一次不等式的解法,需要注意方程的分母不等于0的情况得到k的另一范围,是一道比较容易出错的题目三、解答题1、 (1);(2)的值为;(3)的最

    11、小值为4【解析】【分析】(1)将,代入化简,然后对应的系数相等,即可得;(2)将,代入可得,使相应系数相等可得,将代数式化简为,代入求解即可;(3)根据(2)可得,将化简为,可得,即可得出最小值(1)解:当,时,故答案为:;(2)解:当,时,的值为;(3)解:,由(2)得,当时,原式,当时,取得最小值,最小值为4【考点】题目主要考查整式的乘法及求代数式的值,分式的化简求值,完全平方公式等,熟练掌握各个运算法则是解题关键2、(1)x(x3),去分母,等式的基本性质;见解析,因为分式方程可能产生增根,所以分式方程必须检验;(2)4【解析】【分析】(1)根据解分式方程的依据解答;检验方程的解即可;(

    12、2)根据新概念列分式方程计算即可【详解】.解:(1)分式方程的公分母为x(x3),第一步中“_”处应为 x(x3),这一步的目的是去分母,其依据是等式的基本性质,故答案为:x(x3),去分母,等式的基本性质;检验:当x3时,x(x3)0,x3是原方程的增根,原方程无解理由:因为分式方程可能产生增根,所以分式方程必须检验(2)解:根据题中的新定义化简所求方程得:, 分母得:2+1x1,解得:x4,检验:当x4时,x130,x4是分式方程的解,3、故x的值为【考点】此题考查了解分式方程,根据新定义列分式方程,正确掌握分式方程的解题步骤及法则是解题的关键4【解析】【分析】根据分式的混合运算法则计算,

    13、得到答案【详解】解:原式()【考点】本题考查的是分式的化简,掌握分式的混合运算法则是解题的关键4、(1)x=1(2)【解析】【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验是否使得公分母为0,即可得到分式方程的解【详解】(1)等式两边同乘以(1-2x)得:2x-3-(1-2x)=0,去括号得:2x-3-1+2x=0,移项合并得:4x=4,解得:x=1经检验:x=1时,1-2x0,则x=1是原分式方程的解(2)等式两边同乘以(3x-4)得:5x=-1-2(3x-4), 去括号得:5x=-1-6x+8,移项合并得:11x=7, 解得:经检验:时,3x-40,则是原分式方程

    14、的解【考点】本题考查了分式方程,解题的关键是掌握分式方程的计算方法,根据题目先将分式方程去分母转化为整式方程,在求出整式方程的解得到x的值,分式方程不要忘记验根5、 (1)x=2(2)无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解(1)解:去分母得:4x=x+6,解得:x=2,检验:把x=2代入x(x+6) 0,x=2是原方程的根;(2)解:去分母得:x(x+2)-(x-1)(x+2)=3,解得:x=1,检验:把x=1代入得:(x-1)(x+2)=0,x=1是增根,分式方程无解【考点】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度京改版八年级数学上册第十章分式单元测评练习题(含答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-639637.html
    相关资源 更多
  • 专题05 动词和非谓语动词专项讲练-2023中考英语二轮复习讲练测(广东专用).docx专题05 动词和非谓语动词专项讲练-2023中考英语二轮复习讲练测(广东专用).docx
  • 专题05 动词和非谓语动词专项测试-2023中考英语二轮复习讲练测(广东专用).docx专题05 动词和非谓语动词专项测试-2023中考英语二轮复习讲练测(广东专用).docx
  • 专题05 动点折叠类问题中函数及其综合题型(学生版)学霸冲冲冲shop348121278.taobao.com.docx专题05 动点折叠类问题中函数及其综合题型(学生版)学霸冲冲冲shop348121278.taobao.com.docx
  • 专题05 功和功率【考题猜想】(解析版).docx专题05 功和功率【考题猜想】(解析版).docx
  • 专题05 功和功率【考题猜想】(原卷版).docx专题05 功和功率【考题猜想】(原卷版).docx
  • 专题05 功和功率【考点清单】(解析版).docx专题05 功和功率【考点清单】(解析版).docx
  • 专题05 功和功率【考点清单】(原卷版).docx专题05 功和功率【考点清单】(原卷版).docx
  • 专题05 分类打靶函数应用与函数模型(练习)(解析版).docx专题05 分类打靶函数应用与函数模型(练习)(解析版).docx
  • 专题05 分类打靶函数应用与函数模型(练习)(原卷版).docx专题05 分类打靶函数应用与函数模型(练习)(原卷版).docx
  • 专题05 分类打靶函数应用与函数模型(6大核心考点)(讲义)(解析版).docx专题05 分类打靶函数应用与函数模型(6大核心考点)(讲义)(解析版).docx
  • 专题05 分类打靶函数应用与函数模型(6大核心考点)(讲义)(原卷版).docx专题05 分类打靶函数应用与函数模型(6大核心考点)(讲义)(原卷版).docx
  • 专题05 分段函数研究(教师版).docx专题05 分段函数研究(教师版).docx
  • 专题05 分段函数研究(学生版).docx专题05 分段函数研究(学生版).docx
  • 专题05 分式篇(解析版).docx专题05 分式篇(解析版).docx
  • 专题05 分式篇(原卷版).docx专题05 分式篇(原卷版).docx
  • 专题05 分式方程(解析版).docx专题05 分式方程(解析版).docx
  • 专题05 分式方程(原卷版).docx专题05 分式方程(原卷版).docx
  • 专题05 函数的概念-【中职专用】中职高考数学二轮复习专项突破.docx专题05 函数的概念-【中职专用】中职高考数学二轮复习专项突破.docx
  • 专题05 函数的最大(小)值(含解析)-2021-2022学年高一数学重难点手册(函数的概念与性质篇人教A版2019必修第一册).docx专题05 函数的最大(小)值(含解析)-2021-2022学年高一数学重难点手册(函数的概念与性质篇人教A版2019必修第一册).docx
  • 专题05 函数 5.9函数零点 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.9函数零点 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.8函数图像 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.8函数图像 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题05 函数 5.8函数图像 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.8函数图像 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.7对称性与周期性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.7对称性与周期性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.5单调性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.5单调性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题05 函数 5.5单调性 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.5单调性 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.4对数函数 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.4对数函数 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.3指数函数 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.3指数函数 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1