专题05 分类打靶函数应用与函数模型(6大核心考点)(讲义)(原卷版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题05 分类打靶函数应用与函数模型6大核心考点讲义原卷版 专题 05 分类 打靶 函数 应用 模型 核心 考点 讲义 原卷版
- 资源描述:
-
1、专题05 分类打靶函数应用与函数模型【目录】122310考点一:二次函数与幂模型10考点二:分段函数模型12考点三:对勾函数模型14考点四:指数函数模型17考点五:对数函数模型18考点六:函数模型的选择20本节内容,常以其他学科或与社会生活息息相关的背景来命题,如现实中的生产经营、企业盈利与亏损等热点问题中的增长、减少问题,在这些背景中发现、选择、建立数学模型,如二次函数、指数函数、对数函数模型,对现实问题中数据进行处理以解决问题,体现数学知识的实用性考点要求考题统计考情分析二次函数模型,分段函数模型2021年北京卷第8题,4分2020年上海卷第19题,14分【命题预测】预测2024年高考,可
2、能结合函数与生活应用进行考察,对学生建模能力和数学应用能力综合考察指数函数、对数函数模型2023年I卷第10题,5分2021年甲卷(文)第6题,5分2020年山东卷第6题,5分1、几种常见的函数模型:函数模型函数解析式一次函数模型,为常数且反比例函数模型(为常数)二次函数模型,为常数且指数函数模型,为常数,对数函数模型,为常数,幂函数模型,为常数,2、解函数应用问题的步骤:(1)审题:弄清题意,识别条件与结论,弄清数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用已有知识建立相应的数学模型;(3)解模:求解数学模型,得出结论;(4)还原:将数学问题
3、还原为实际问题3、解答函数应用题应注意的问题首先,要认真阅读理解材料应用题所用的数学语言多为“文字语言、符号语言、图形语言”并用,往往篇幅较长,立意有创新脱俗之感阅读理解材料要达到的目标是读懂题目所叙述的实际问题的意义,领悟其中的数学本质,接受题目所约定的临时性定义,理解题目中的量与量的位置关系、数量关系,确立解体思路和下一步的努力方向,对于有些数量关系较复杂、较模糊的问题,可以借助画图和列表来理清它其次,建立函数关系根据前面审题及分析,把实际问题“用字母符号、关系符号”表达出来,建立函数关系其中,认真阅读理解材料是建立函数模型的关键在阅读这一过程中应像解答语文和外语中的阅读问题一样,有“泛读
4、”与“精读”之分这是因为一般的应用问题,一方面为了描述的问题与客观实际尽可能地相吻合,就必须用一定的篇幅描述其中的情境;另一方面有时为了思想教育方面的需要,也要用一些非数量关系的语言来叙述,而我们解决问题所关心的东西是数量关系,因此对那些叙述的部分只需要“泛读”即可反过来,对那些刻画数量关系、位置关系、对应关系等与数学有关的问题的部分,则应“精读”,一遍不行再来一遍,直到透彻地理解为止,此时切忌草率1(2021甲卷)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量通常用五分记录法和小数记录法记录视力数据,五分记录法的数据和小数记录法的数据满足已知某同学视力的五分记录法的数据为4.9,则
5、其视力的小数记录法的数据约为A1.5B1.2C0.8D0.62(2021北京)某一时段内,从天空降落到地面上的雨水,未经蒸发、渗漏、流失而在水平面上积聚的深度,称为这个时段的降雨量(单位:24 降雨量的等级划分如下:等级降雨量(精确到小雨中雨大雨暴雨在综合实践活动中,某小组自制了一个底面直径为,高为的圆锥形雨量器若一次降雨过程中,该雨量器收集的的雨水高度是 如图所示),则这降雨量的等级是A小雨B中雨C大雨D暴雨3(2020山东)基本再生数与世代间隔是新冠肺炎的流行病学基本参数基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间在新冠肺炎疫情初始阶段,可以用指数模型:描述
6、累计感染病例数随时间(单位:天)的变化规律,指数增长率与,近似满足有学者基于已有数据估计出,据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为A1.2天B1.8天C2.5天D3.5天4(2019新课标)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日点的轨道运行点是平衡点,位于地月连线的延长线上设地球质量为,月球质量为,地月距离为,点到月球的距离为,根据牛顿运动定律和万有引力定律,满足方程:设
7、由于的值很小,因此在近似计算中,则的近似值为ABCD5(多选题)(2023新高考)噪声污染问题越来越受到重视用声压级来度量声音的强弱,定义声压级,其中常数是听觉下限阈值,是实际声压下表为不同声源的声压级:声源与声源的距离声压级燃油汽车10混合动力汽车10电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车处测得实际声压分别为,则ABCD6(2018浙江)我国古代数学著作张邱建算经中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为,则,当时,7(2020上海)在研究某市交通情况时,道路密度是指该路段上一
8、定时间内通过的车辆数除以时间,车辆密度是该路段一定时间内通过的车辆数除以该路段的长度,现定义交通流量为,为道路密度,为车辆密度,交通流量(1)若交通流量,求道路密度的取值范围;(2)已知道路密度时,测得交通流量,求车辆密度的最大值8(2023上海)为了节能环保、节约材料,定义建筑物的“体形系数” ,其中为建筑物暴露在空气中的面积(单位:平方米),为建筑物的体积(单位:立方米)(1)若有一个圆柱体建筑的底面半径为,高度为,暴露在空气中的部分为上底面和侧面,试求该建筑体的“体形系数” ;(结果用含、的代数式表示)(2)定义建筑物的“形状因子”为,其中为建筑物底面面积,为建筑物底面周长,又定义为总建
9、筑面积,即为每层建筑面积之和(每层建筑面积为每一层的底面面积)设为某宿舍楼的层数,层高为3米,则可以推导出该宿舍楼的“体形系数”为当,时,试求当该宿舍楼的层数为多少时,“体形系数” 最小9(2021上海)已知一企业今年第一季度的营业额为1.1亿元,往后每个季度增加0.05亿元,第一季度的利润为0.16亿元,往后每一季度比前一季度增长(1)求今年起的前20个季度的总营业额;(2)请问哪一季度的利润首次超过该季度营业额的?考点一:二次函数与幂模型1、二次函数模型的应用构建二次函数模型解决最优问题时,可以利用配方法、判别式法、换元法、讨论函数的单调性等方法求最值,也可以根据函数图象的对称轴与函数定义
10、域的对应区间之间的位置关系讨论求解,但一定要注意自变量的取值范围2、幂函数模型为(,为常数,),在计算幂函数解析式、求幂函数最值的时候,通常利用幂函数图像、单调性、奇偶性解题例1(2023江苏南通高三统考开学考试)一个动力船拖动载重量相等的小船若干只,在两个港口之间来回运货.若拖4只小船,则每天能往返16次;若拖7只小船,则每天能往返10次.已知增加的小船只数与相应减少的往返次数成正比例.为使得每天运货总量最大,则每次拖 只小船.例2(2023全国高三专题练习)为弘扬“中国女排精神”,加强青少年体育发展.学校在体育课中组织学生进行排球练习,某同学以初速度竖直上抛一排球,该排球能够在抛出点2m以
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
