2022-2023学年度北师大版八年级数学上册第一章勾股定理综合练习试卷(含答案详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年度 北师大 八年 级数 上册 第一章 勾股定理 综合 练习 试卷 答案 详解
- 资源描述:
-
1、北师大版八年级数学上册第一章勾股定理综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,所有阴影四边形都是正方形,所有三角形都是直角三角形,已知正方形A,B,C的面积依次为2,4,3,则正方形D
2、的面积为()A9B8C27D452、若a,b为直角三角形的两直角边,c为斜边,下列选项中不能用来证明勾股定理的是()ABCD3、如图,ABC中,以其三边分别向外侧作正方形,然后将整个图形放置于如图所示的长方形中,若要求图中两个阴影部分面积之和,则只需知道()A以BC为边的正方形面积B以AC为边的正方形面积C以AB为边的正方形面积DABC的面积4、两只小鼹鼠在地下打洞,一只朝正北方向挖,每分钟挖8cm,另一只朝正东方向挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距()A50cmB120cmC140cmD100cm5、如图,在RtACB和RtDCE中,ACBC2,CDCE,CBD15,连接AE,B
3、D交于点F,则BF的长为()ABCD6、如图,长方形中,将此长方形折叠,使点与点重合,折痕为,则的长为()A12B8C10D137、 “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为()A3B4C5D68、我国古代数学名著算法统宗有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地送行二步与人齐,5尺人高曾记,仕女家人争蹴良工高士素好奇,算出索长有几?”此问题可理解为:“如图,有一架秋千,当它静止时,踏板
4、离地距离的长为尺,将它向前水平推送尺时,即尺,秋千踏板离地的距离和身高尺的人一样高,秋千的绳索始终拉得很直,试问绳索有多长?”,设秋千的绳索长为尺,根据题意可列方程为()ABCD9、如图,在ABC中,AB2,ABC60,ACB45,D是BC的中点,直线l经过点D,AEl,BFl,垂足分别为E,F,则AE+BF的最大值为()AB2C2D310、我图古代数学著作九章算术中有这样一个问题:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?(注:丈、尺是长度单位,1丈=10尺 )意思为:如图,有一个边长为1丈的正方形水池,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池
5、一边的岸边,它的顶端恰好碰到池边的水面则这根芦苇的长度是()A5尺B10尺C12尺D13尺第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、图,在菱形ABCD中,是锐角,于点E,M是AB的中点,连接MD,若,则的值为_2、已知RtABC中,C90,ab14cm,c10cm,则RtABC的面积等于_cm23、如图,在的网格中每个小正方形的边长都为1,的顶点、都在格点上,点为边的中点,则线段的长为_4、如图,已知四边形中,则四边形的面积等于_.5、九章算术是我国古代数学名著,书中有下列问题:“今有垣高一丈,倚木于垣,上与垣齐引木却行一尺,其木至地,问木长几何?”其意思为:今有
6、墙高1丈,倚木杆于墙,使木之上端与墙平齐,牵引木杆下端退行1尺,则木杆(从墙上)滑落至地上问木杆是多长?(1丈=10尺)设木杆长为x尺根据题意,可列方程为_三、解答题(5小题,每小题10分,共计50分)1、已如:如图,四边形中,求四边形的面积2、阅读理解:课堂上学习了勾股定理后,知道“勾三、股四、弦五”王老师给出一组数让学生观察:3,4,5;5,12,13;7,24,25;9,40,41;学生发现这些勾股数的勾都是奇数,且从3起就没有间断过,于是王老师提出以下问题让学生解决(1)请你根据上述的规律写出下一组勾股数:11,_,_;(2)若第一个数用字母(为奇数,且)表示,则后两个数用含的代数式分
7、别怎么表示?聪明的小明发现每组第二个数有这样的规律:,于是他很快表示出了第二个数为,则用含的代数式表示第三个数为_(3)用所学知识说明(2)中用表示的三个数是勾股数3、如图所示的一块地,已知,求这块地的面积4、如图,将一个长方形纸片ABCD沿对角线AC折叠,点B落在点E处,AE交DC于点F,已知AB=4,BC=2,求折叠后重合部分的面积5、算法统宗是中国古代数学名著,作者是我国明代数学家程大位在算法统宗中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地送行二步与人齐,五尺人高曾记仕女佳人争蹴,终朝笑语欢嬉良工高士素好奇,算出索长有几”(注:1步5尺)译文:“有一架秋千,当它静止时,踏板离地
8、1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,问绳索有多长”-参考答案-一、单选题1、A【解析】【分析】设正方形D的面积为x,根据图形得出方程2+4=x-3,求出即可【详解】正方形A、B、C的面积依次为2、4、3,根据图形得:2+4=x3解得:x=9故选A【考点】本题考查了勾股定理,根据图形推出四个正方形的关系是解决问题的关键2、A【解析】【分析】由题意根据图形的面积得出的关系,即可证明勾股定理,分别分析即可得出答案【详解】解:A、不能利用图形面积证明勾股定理;B、根据面积得到;C、根据面积得到,整理得;D、根据面积得到,整理得.故
9、选:A.【考点】本题考查勾股定理的证明,熟练掌握利用图形的面积得出的关系,即可证明勾股定理.3、D【解析】【分析】如图所示,过点C作CNAB于N,延长AB、BA分别交正方形两边于H、E,证明ADECAN得到,AE=CN同理可证BGHCBN,得到,BH=CN,则,即可推出由此即可得到答案【详解】解:如图所示,过点C作CNAB于N,延长AB、BA分别交正方形两边于H、E,CNA=DEA=DAC=90,DAE+EDA=DAE+CAN=90,ADE=CAN,又AD=CA,ADECAN(AAS),AE=CN同理可证BGHCBN,BH=CN, ,只需要知道ABC的面积的面积即可求出阴影部分的面积,故选D【
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-643363.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
