分享
分享赚钱 收藏 举报 版权申诉 / 21

类型2022-2023学年解析卷人教版数学八年级上册期末综合复习试题 卷(Ⅲ)(详解版).docx

  • 上传人:a****
  • 文档编号:647879
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:21
  • 大小:600.68KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022-2023学年解析卷人教版数学八年级上册期末综合复习试题 卷详解版 2022 2023 学年 解析 卷人教版 数学 年级 上册 期末 综合 复习 试题 详解
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期末综合复习试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、能说明“锐角,锐角的和是锐角”是假命题的例证图是()ABCD2、若

    2、把分式中的和同时扩大为原来的3倍,则分式的值()A扩大到原来的3倍B扩大到原来的6倍C缩小为原来的D不变3、已知a为整数,且为正整数,求所有符合条件的a的值的和()A8B12C16D104、如图,在中,连接BC,CD,则的度数是()A45B50C55D805、下列倡导节约的图案中,是轴对称图形的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列命题错误的有()A两个全等三角形拼在一起是一个轴对称图形;B等腰三角形的对称轴是底边上的中线;C等边三角形一边上的高就是这边的垂直平分线;D一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形2、如图,和的平分线相交于点F,过点F作,交

    3、于D,交于E,下列结论正确的是()ABBDF,都是等腰三角形 线 封 密 内 号学级年名姓 线 封 密 外 CBD+CE=DEDADE的周长为3、已知三角形的六个元素如图所示,则甲、乙、丙三个三角形中与全等的是()A甲B乙C丙D不能确定4、若,则的值为()ABC20D105、下列各式不能写成完全平方式的多项式有()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,平分,的延长线交于点,若,则的度数为_2、(1)等腰三角形底边长为6cm,一腰上的中线把它的周长分成两部分的差为2cm,则腰长为_(2)已知的周长为24,于点D,若的周长为20,则AD的长为_(3)

    4、已知等腰三角形的周长为24,腰长为x,则x的取值范围是_3、小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),的度数是_.4、若a 2+ b 2+ c 2- ab - bc- ac =0,且a +3b +4c =16,则a + b + c的值为_.5、计算_四、解答题(5小题,每小题8分,共计40分)1、(1)已知a+b=3,a2+b2=5,求ab的值;(2)若3m=8,3n=2,求32m-3n+1的值2、先分解因式,再求值:,其中,3、分解因式:(1)(2)4、某校初二年级的甲、乙两个班的同学以班级为单位分别乘坐大巴车去某基地参加拓展活动,此基地距离该校

    5、90千米,甲班的甲车出发15分钟后,乙班的乙车才出发,结果他们同时到达已知乙车的平均速度是甲车的平均速度的1.2倍,求甲车的平均速度5、一个零件形状如图所示,按规定应等于75,和应分别是18和22,某质检员测得,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由 线 封 密 内 号学级年名姓 线 封 密 外 -参考答案-一、单选题1、C【解析】【分析】先将每个图形补充成三角形,再利用三角形的外角性质逐项判断即得答案【详解】解:A、如图1,1是锐角,且1=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意; B、如图2,2是锐角,且2=,所以此图说明“锐角,锐角的

    6、和是锐角”是真命题,故本选项不符合题意;C、如图3,3是钝角,且3=,所以此图说明“锐角,锐角的和是锐角”是假命题,故本选项符合题意;D、如图4,4是锐角,且4=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意故选:C【考点】本题考查了真假命题、举反例说明一个命题是假命题以及三角形的外角性质等知识,属于基本题型,熟练掌握上述基本知识是解题的关键2、D【解析】【分析】根据分式的基本性质即可求出答案【详解】解:,把分式中的和同时扩大为原来的3倍,则分式的值不变,故选:D【考点】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型3、C【解析】【分析】首先对

    7、于分式进行化简,然后根据a为整数、分式值为正整数可求出a的值,最后将a的所有值相加即可【详解】解: 线 封 密 内 号学级年名姓 线 封 密 外 ,a为整数,且分式的值为正整数,a51,5,a6,10,所有符合条件的a的值的和:6+1016故选:C【考点】本题考查了分式的混合运算,对分式的分子和分母能够正确分解因式是解题的关键4、B【解析】【分析】连接AC并延长交EF于点M由平行线的性质得,再由等量代换得,先求出即可求出【详解】解:连接AC并延长交EF于点M,故选B【考点】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型5、C【解析】【分析】如果一个图形沿一条直线折叠,直线两旁的

    8、部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解【详解】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误故选C【考点】此题主要考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合 线 封 密 内 号学级年名姓 线 封 密 外 二、多选题1、ABC【解析】【分析】根据题轴对称的性质,对题中条件进行逐一分析,即可求解【详解】解:A、两个全等三角形合在一起是一个轴对称图形,由于位置关系不确定,所以不一定是轴对称图形,故本选项错误,符合题意;B、等腰三角的对称轴是底边上的中线

    9、所在的直线,故本选项错误,符合题意; C、等边三角形一边上的高所在的直线就是这边的垂直平分线,故本选项错误,符合题意;D、一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形,故本选项正确,不符合题意;故选:ABC【考点】本题主要考查轴对称的性质,熟练掌握轴对称图形的对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等是解题的关键2、BCD【解析】【分析】由角平分线定义和平行线的性质得出,得出,同理可得,都是等腰三角形,即可判断A、B;再根据等量代换可以得出,即可判断C;的周长,即可判断D【详解】解:A

    10、平分,同理可得,都是等腰三角形;故A选项错误,不符合题意;故B选项正确,符合题意;,故C选项正确,符合题意;的周长,故D选项正确,符合题意;故选:BCD【考点】本题考查了等腰三角形的判定与性质,平行线的性质,角平分线的定义等知识,解题的关键是证出,3、BC【解析】【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)逐个判断即可【详解】解:已知ABC中,B50,C58,A72,BCa,ABc,ACb, 线 封 密 内 号学级年名姓 线 封 密 外 图甲:只有一条边和AB相等,没有其它条件,不符合三角形全等的判定定理,即和ABC不全等;图乙:只有两个角对应相等,还有一条边对应相等,符

    11、合三角形全等的判定定理(AAS),即和ABC全等;图丙:有两边及其夹角,符合三角形全等的判定定理(SAS),能推出两三角形全等;故选:BC【考点】本题考查了全等三角形的判定,解题的关键是注意掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS4、AD【解析】【分析】根据完全平方公式的变形先求得的值,进而求得的值,即可求解【详解】,故选AD【考点】本题考查了完全平方公式的变形,求得的值是解题的关键5、ACD【解析】【分析】根据完全平方公式的结构特点判断即可【详解】解:A、,不符合完全平方公式的结构特点,符合题意;B、,符合完全平方公式的结构特点,不符合题意;C、,不符合完全平方公式

    12、的结构特点,符合题意;D、,不符合完全平方公式的结构特点,符合题意;故选:ACD【考点】本题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键三、填空题1、【解析】【分析】如图,连接,延长与交于点利用等腰三角形的三线合一证明是的垂直平分线,从而得到 再次利用等腰三角形的性质得到:从而可得答案【详解】解:如图,连接,延长与交于点 平分, 线 封 密 内 号学级年名姓 线 封 密 外 是的垂直平分线, 故答案为: 【考点】本题考查的是等腰三角形的性质,掌握等腰三角形的三线合一是解题的关键2、 4cm或8cm 8 【解析】【分析】(1)根据题意画出图形,由题意得 ,即可得 ,又由等腰三角形的底边

    13、长为6cm,即可求得答案(2)由ABC的周长为24得到AB,BC的关系,由ABD的周长为20得到AB,BD,AD的关系,再由等腰三角形的性质知,BC为BD的2倍,故可解出AD的值(3)设底边长为y,再由三角形的三边关系即可得出答案【详解】(1)如图, ,BD是中线由题意得存在两种情况:, , 腰长为:4cm或8cm故答案为:4cm或8cm(2)ABC的周长为24, 线 封 密 内 号学级年名姓 线 封 密 外 的周长为20 故答案为:8(3)设底边长为y等腰三角形的周长为24,腰长为x ,即 解得 故答案为:【考点】本题考查了三角形的综合问题,掌握等腰三角形的性质、等腰三角形三线合一的性质、三

    14、角形的周长定义、三角形的三边关系是解题的关键3、45【解析】【分析】根据折叠过程可知,在折叠过程中角一直是轴对称的折叠.【详解】在折叠过程中角一直是轴对称的折叠,故答案为45【考点】考核知识点:轴对称.理解折叠的本质是关键.4、6【解析】【分析】先把的两边都乘以2,然后配方,根据非负数的性质求出a,b,c的关系,代入a +3b +4c =16,求出a,b,c的的值,然后代入a + b + c计算即可.【详解】,a-b=0,b-c=0,a-c=0,a=b=c,a + 3b + 4c = 16,8a=16,a=b=c=2,a+b+c=6.故答案为6.【考点】本题考查了配方法、偶次方的非负性及求代数

    15、式的值,熟练掌握a22ab+b2=(ab)2是解答本题的关键5、【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据分式的运算法则计算即可【详解】解:,故答案为:【考点】此题主要考查分式的运算,解题的关键是熟知其运算法则四、解答题1、(1)2;(2)24;【解析】【分析】(1)运用完全平方公式求解;(2)利用同底数幂的乘除法,幂的乘方与积的乘方化成含有3m,3n的式子求解【详解】(1)(a+b)2-(a2+b2)2=9-52=2;(2)3m=8,3n=232m-3n+1=(3m)2(3n)33=6483=24【考点】本题主要考查了完全平方公式,同底数幂的乘除法,幂的乘方与积的乘

    16、方,解题的关键是熟记法则和公式求解.2、,【解析】【分析】先利用分组分解法、公式法、提公因式法进行因式分解,再将a、b的值代入求值即可得【详解】原式,当,时,原式,【考点】本题考查了利用分组分解法、公式法、提公因式法进行因式分解,因式分解的主要方法包括:提公因式法、公式法、十字相乘法、分组分解法等,熟练掌握各方法是解题关键3、(1);(2) 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】(1)提取公因式-2a后,对剩下的因式再运用十字相乘法进行因式分解即可;(2)原式利用平方差公式分解后,合并同类项即可得到答案.【详解】(1) ;(2);【考点】本题考查了用提公因式法和公式法进

    17、行因式分解,一个多项式有公因式首先要提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.4、甲车的平均速度是60千米/时【解析】【分析】设甲车的平均速度是千米/时,则乙车的平均速度是千米/时,由题意:此基地距离该校90千米,甲班的甲车出发15分钟后,乙班的乙车才出发,结果他们同时到达,列出分式方程,求解即可【详解】解:设甲车的平均速度是千米/时,则乙车的平均速度是千米/时, 根据题意,得, 解得经检验,是原方程的解, 答:甲车的平均速度是60千米/时【考点】本题考查了分式方程的应用,找到合适的等量关系,正确列出分式方程是解题的关键5、不合格,理由见解析【解析】【分析】延长BD与AC相交于点E利用三角形的外角性质,可得,即可求解【详解】解:如图,延长BD与AC相交于点E是的一个外角,同理可得李师傅量得,不是115, 线 封 密 内 号学级年名姓 线 封 密 外 这个零件不合格【考点】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年解析卷人教版数学八年级上册期末综合复习试题 卷(Ⅲ)(详解版).docx
    链接地址:https://www.ketangku.com/wenku/file-647879.html
    相关资源 更多
  • 专题05 动词和非谓语动词专项讲练-2023中考英语二轮复习讲练测(广东专用).docx专题05 动词和非谓语动词专项讲练-2023中考英语二轮复习讲练测(广东专用).docx
  • 专题05 动词和非谓语动词专项测试-2023中考英语二轮复习讲练测(广东专用).docx专题05 动词和非谓语动词专项测试-2023中考英语二轮复习讲练测(广东专用).docx
  • 专题05 动点折叠类问题中函数及其综合题型(学生版)学霸冲冲冲shop348121278.taobao.com.docx专题05 动点折叠类问题中函数及其综合题型(学生版)学霸冲冲冲shop348121278.taobao.com.docx
  • 专题05 功和功率【考题猜想】(解析版).docx专题05 功和功率【考题猜想】(解析版).docx
  • 专题05 功和功率【考题猜想】(原卷版).docx专题05 功和功率【考题猜想】(原卷版).docx
  • 专题05 功和功率【考点清单】(解析版).docx专题05 功和功率【考点清单】(解析版).docx
  • 专题05 功和功率【考点清单】(原卷版).docx专题05 功和功率【考点清单】(原卷版).docx
  • 专题05 分类打靶函数应用与函数模型(练习)(解析版).docx专题05 分类打靶函数应用与函数模型(练习)(解析版).docx
  • 专题05 分类打靶函数应用与函数模型(练习)(原卷版).docx专题05 分类打靶函数应用与函数模型(练习)(原卷版).docx
  • 专题05 分类打靶函数应用与函数模型(6大核心考点)(讲义)(解析版).docx专题05 分类打靶函数应用与函数模型(6大核心考点)(讲义)(解析版).docx
  • 专题05 分类打靶函数应用与函数模型(6大核心考点)(讲义)(原卷版).docx专题05 分类打靶函数应用与函数模型(6大核心考点)(讲义)(原卷版).docx
  • 专题05 分段函数研究(教师版).docx专题05 分段函数研究(教师版).docx
  • 专题05 分段函数研究(学生版).docx专题05 分段函数研究(学生版).docx
  • 专题05 分式篇(解析版).docx专题05 分式篇(解析版).docx
  • 专题05 分式篇(原卷版).docx专题05 分式篇(原卷版).docx
  • 专题05 分式方程(解析版).docx专题05 分式方程(解析版).docx
  • 专题05 分式方程(原卷版).docx专题05 分式方程(原卷版).docx
  • 专题05 函数的概念-【中职专用】中职高考数学二轮复习专项突破.docx专题05 函数的概念-【中职专用】中职高考数学二轮复习专项突破.docx
  • 专题05 函数的最大(小)值(含解析)-2021-2022学年高一数学重难点手册(函数的概念与性质篇人教A版2019必修第一册).docx专题05 函数的最大(小)值(含解析)-2021-2022学年高一数学重难点手册(函数的概念与性质篇人教A版2019必修第一册).docx
  • 专题05 函数 5.9函数零点 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.9函数零点 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.8函数图像 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.8函数图像 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题05 函数 5.8函数图像 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.8函数图像 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.7对称性与周期性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.7对称性与周期性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.5单调性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.5单调性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题05 函数 5.5单调性 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.5单调性 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.4对数函数 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.4对数函数 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.3指数函数 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.3指数函数 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1