分享
分享赚钱 收藏 举报 版权申诉 / 25

类型2022年京改版八年级数学上册第十二章三角形专题练习试题(含答案及解析).docx

  • 上传人:a****
  • 文档编号:693698
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:25
  • 大小:468.07KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 改版 八年 级数 上册 第十二 三角形 专题 练习 试题 答案 解析
    资源描述:

    1、京改版八年级数学上册第十二章三角形专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,若,则下列结论中不一定成立的是()ABCD2、下列长度的3根小木棒不能搭成三角形的是()A2cm,3cm,4

    2、cmB1cm,2cm,3cmC3cm,4cm,5cmD4cm,5cm,6cm3、如图,OB平分AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个就能使DOEFOE,你认为要添加的那个条件是()AOD=OEBOE=OFCODE =OEDDODE=OFE4、如图,在小正三角形组成的网格中,已有个小正三角形涂黑,还需涂黑个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则的最小值为()ABCD5、自新冠肺炎疫情发生以来,全国人民共同抗疫下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形

    3、的是()ABCD6、已知三角形的两边分别为1和4,第三边长为整数 ,则该三角形的周长为()A7B8C9D107、下列四组数中,是勾股数的是()A5,12,13B4,5,6C2,3,4D1,8、如图:B=C=90,E是BC的中点,DE平分ADC,则下列说法正确的有几个()(1)AE平分DAB;(2)EBADCE; (3)AB+CD=AD;(4)AEDE(5)DE=AEA2个B3个C4个D59、如图,四边形中,且,则四边形的面积为()ABCD10、一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处灯塔C在海岛在海岛A的北偏西42方向上,在海岛B的北偏西84方向上则海岛B到灯塔

    4、C的距离是()A15海里B20海里C30海里D60海里第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在等腰中, ,则边上的高是 _2、如图,C=ABD=90,AC=4,BC=3,BD=12,则AD=_. 3、如图,中,点D、点E分别在边、上,连结、,若,且的周长比的周长大6则的周长为_4、我们定义:一个三角形最小内角的角平分线将这个三角形分割得到的两个三角形它们的面积之比称为“最小角割比”(),那么三边长分别为7,24,25的三角形的最小角割比是_5、九章算术是我国古代最重要的数学著作之一,在勾股章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺

    5、,问折着高几何?”翻译成数学问题是:如图所示,在ABC中,ACB=90, AC+AB=10, BC=3,求AC的长,若设AC=x, 则可列方程为_三、解答题(5小题,每小题10分,共计50分)1、如图和都是等腰直角三角形,顶点在的斜边上,求证:2、如图,在中,且,点是斜边的中点,E、F分别是AB、AC边上的点,且连接(1)求证:;(2)如图,若,则的面积为_3、如图,在中,点是中点,点为边上一点,连接,以为边在的左侧作等边三角形,连接(1)的形状为_;(2)随着点位置的变化,的度数是否变化?并结合图说明你的理由;(3)当点落在边上时,若,请直接写出的长4、如图,已知AB=AD,AC=AE,BA

    6、E=DAC求证:C=E5、如图,在ABC和ADE中,AB=AD,B=D,1=2求证:BC=DE-参考答案-一、单选题1、A【解析】【分析】根据翻三角形全等的性质一一判断即可【详解】解:ABCADE,AD=AB,AE=AC,BC=DE,ABC=ADE,BAD=CAE,AD=AB,ABD=ADB,BAD=180-ABD-ADB,CDE=180-ADB-ADE,ABD=ADE,BAD=CDE故B、C、D选项不符合题意,故选:A【考点】本题考了三角形全等的性质,解题的关键是三角形全等的性质2、B【解析】【分析】看哪个选项中两条较小的边的和大于最大的边即可【详解】A,能构成三角形,不合题意;B,不能构成

    7、三角形,符合题意;C,能构成三角形,不合题意;D,能构成三角形,不合题意故选B【考点】此题考查了三角形三边关系,解题关键在于看较小的两个数的和能否大于第三个数3、D【解析】【分析】根据OB平分AOC得AOB=BOC,又因为OE是公共边,根据全等三角形的判断即可得出结果【详解】解:OB平分AOCAOB=BOC当DOEFOE时,可得以下结论:OD=OF,DE=EF,ODE=OFE,OED=OEFA答案中OD与OE不是DOEFOE的对应边,A不正确;B答案中OE与OF不是DOEFOE的对应边,B不正确;C答案中,ODE与OED不是DOEFOE的对应角,C不正确;D答案中,若ODE=OFE,在DOE和

    8、FOE中, DOEFOE(AAS)D答案正确故选:D【考点】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键4、C【解析】【分析】由等边三角形有三条对称轴可得答案【详解】如图所示,n的最小值为3故选C【考点】本题考查了利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质5、D【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可【详解】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、是轴对称图形,符合题意故选:D【考点】本题考查了轴对称

    9、图形,熟练掌握轴对称图形的定义是解题的关键6、C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长【详解】设第三边为x,根据三角形的三边关系,得:4-1x4+1,即3x5,x为整数,x的值为4三角形的周长为1+4+4=9故选C.【考点】此题考查了三角形的三边关系关键是正确确定第三边的取值范围7、A【解析】【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方【详解】解:A、52+122132,都是正整数,是勾股数,故此选项符合题意;B、42+5262,不是勾股数,故此选项

    10、不合题意;C、22+3242,不是勾股数,故此选项不合题意;D、,不是正整数,不是勾股数,故此选项不合题意;故选:A【考点】此题主要考查了勾股数,解答此题要用到勾股数组的定义,如果a,b,c为正整数,且满足a2+b2=c2,那么,a、b、c叫做一组勾股数8、B【解析】【分析】过点E作EFAD垂足为点F,证明DEFDEC(AAS);得出CEEF,DCDF,CEDFED,证明RtAFERtABE(HL);得出AFAB,FAEBAE,AEFAEB,即可得出答案【详解】解:如图,过点E作EFAD,垂足为点F,可得DFE90,则DFEC,DE平分ADC,FDECDE,在DCE和DFE中,DEFDEC(A

    11、AS);CEEF,DCDF,CEDFED,E是BC的中点,CEEB,EFEB,在RtABE和RtAFE中,RtAFERtABE(HL);AFAB,FAEBAE,AEFAEB,AE平分DAB,故结论(1)正确,则ADAF+DFAB+CD,故结论(3)正确;可得AEDFED+AEFFEC+BEF90,即AEDE故结论(4)正确ABCD,AEDE,(5)错误,EBADCE不可能成立,故结论(2)错误综上所知正确的结论有3个故答案为:B【考点】本题考查全等三角形的判定与性质、平行线的判定等内容,作出辅助线是解题的关键9、C【解析】【分析】连接AC,在RtADC中,已知AB,BC的长,运用勾股定理可求出

    12、AC的长,在ADC中,已知三边长,运用勾股定理逆定理,可得此三角形为直角三角形,故四边形ABCD的面积为RtACD与RtABC的面积之差【详解】解:连接AC,AC=5cm,CD=12cm,DA=13cm, ADC为直角三角形,故四边形ABCD的面积为24cm2故选:C【考点】本题考查的是勾股定理的逆定理及三角形的面积公式,根据题意作出辅助线,判断出ACD的形状是解答此题的关键10、C【解析】【分析】根据题意画出图形,根据三角形外角性质求出C=CAB=42,根据等角对等边得出BC=AB,求出AB即可【详解】解:根据题意得:CBD=84,CAB=42,C=CBD-CAB=42=CAB,BC=AB,

    13、AB=15海里/时2时=30海里,BC=30海里,即海岛B到灯塔C的距离是30海里故选C.【考点】本题考查了等腰三角形的性质和判定和三角形的外角性质,关键是求出C=CAB,题目比较典型,难度不大二、填空题1、4【解析】【分析】根据题意作出高线,根据勾股定理即可得出结论【详解】解:如图所示,过点作于点,故答案为:4【考点】本题考查的是勾股定理的应用,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键2、13【解析】【分析】先根据勾股定理求出AB的长,再根据勾股定理求出AD的长【详解】在直角三角形ABC中,AC=4,BC=3根据勾股定理,得AB=5在RtABD中

    14、,BD=12根据勾股定理,得AD=13.故答案为13【考点】本题考查了勾股定理的应用,能运用勾股定理进行计算是解本题的关键3、12【解析】【分析】设AC=4a,AB=6a,BC=8a,根据全等三角形的性质得到AD=BD,AE=BE,再设AE=BE=x,则EC=8a-x,由题意得方程18a-12a=6,即可求解【详解】解:AC:AB:BC=2:3:4,设AC=4a,AB=6a,BC=8a,ADEBDE,AD=BD,AE=BE,再设AE=BE=x,则EC=8a-x,ABC的周长= AC+AB+BC=4a+6a +8a=18a,AEC的周长= AC+AE+EC=4a+x +8a-x=12a,由题意得

    15、:18a-12a=6,解得:a=1,AEC的周长为12,故答案为:12【考点】本题考查了全等三角形的性质,解一元一次方程,正确的识别图形是解题的关键4、【解析】【分析】根据题意作出图形,然后根据角平分线的性质得到,再根据三角形的面积和最小角割比的定义计算即可【详解】解:如图示,则,根据题意,作的角平分线交于点,过点,作交于点,过点,作交于点,则,则()故答案是:【考点】本题考查了三角形角平分线的性质和三角形的面积计算,熟悉相关性质是解题的关键5、【解析】【分析】设AC=x,则AB=10-x,再由即可列出方程【详解】解:,且,在RtABC中,由勾股定理有:,即:,故可列出的方程为:,故答案为:【

    16、考点】本题考查了勾股定理的应用,熟练掌握勾股定理是解决本题的关键三、解答题1、证明见解析【解析】【分析】连结BD,易证,即BD=AE、AC=BC又可证明出ADB=90,再结合勾股定理即可得到所要证明的等式是成立的【详解】证明:如图,连结BD ,在EAC和DBC中, 又, 在中, 在中, 【考点】本题考查等腰直角三角形的性质,全等三角形的判定和性质以及勾股定理灵活应用全等三角形的判定和性质是解题关键2、(1)见解析;(2)【解析】【分析】(1)易证ADE=CDF,即可证明ADECDF;(2)由(1)可得AE=CF,BE=AF,再根据DEF的面积=,即可解题【详解】(1)证明:AB=AC,D是BC

    17、中点,BAD=C=45,AD=BD=CD,ADE+ADF=90,ADF+CDF=90,ADE=CDF,在ADE和CDF中,ADECDF(ASA)(2)解:ADECDFAE=CF=5,BE=AF=12,AB=AC=17,DEF的面积=【考点】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证ADECDF是解题的关键3、(1)等边三角形;(2)的度数不变,理由见解析;(3)2【解析】【分析】(1)由、,可得出、,结合点是中点,可得出,进而即可得出为等边三角形;(2)由(1)可得出,根据可得出,再结合、即可得出,根据全等三角形的性质即可得出,即的度数不变;(3)易证为等腰三角形

    18、,由等腰三角形及等边三角形的性质可得出,进而可得出【详解】解:(1)在中,点是中点,为等边三角形故答案为等边三角形(2)的度数不变,理由如下:,点是中点,为等边三角形,又为等边三角形,在和中,即的度数不变(3)为等边三角形,为等腰三角形,【考点】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、含度角的直角三角形勾股定理以及等腰三角形的性质,解题的关键是:(1)找出、;(2)利用全等三角形的判定定理找出;(3)根据等腰三角形及等边三角形的性质找出4、见解析.【解析】【分析】由BAE=DAC可得到BAC=DAE,再根据“SAS”可判断ABCADE,根据全等的性质即可得到C=E【详解】BAE=DAC,BAECAE=DACCAE,即BAC=DAE,在ABC和ADE中,ABCADE(SAS),C=E【考点】本题考查了全等三角形的判定与性质:判断三角形全等的方法有“SSS”、“ SAS”、“ ASA”、“AAS”;全等三角形的对应角相等,对应边相等5、证明见解析.【解析】【分析】根据ASA证明ADEABC即可得到答案;【详解】证明:1=2,DAC+1=2+DACBAC=DAE,在ABC和ADE中,ADEABC(ASA)BC=DE,【考点】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年京改版八年级数学上册第十二章三角形专题练习试题(含答案及解析).docx
    链接地址:https://www.ketangku.com/wenku/file-693698.html
    相关资源 更多
  • 专题05 动词和非谓语动词专项讲练-2023中考英语二轮复习讲练测(广东专用).docx专题05 动词和非谓语动词专项讲练-2023中考英语二轮复习讲练测(广东专用).docx
  • 专题05 动词和非谓语动词专项测试-2023中考英语二轮复习讲练测(广东专用).docx专题05 动词和非谓语动词专项测试-2023中考英语二轮复习讲练测(广东专用).docx
  • 专题05 动点折叠类问题中函数及其综合题型(学生版)学霸冲冲冲shop348121278.taobao.com.docx专题05 动点折叠类问题中函数及其综合题型(学生版)学霸冲冲冲shop348121278.taobao.com.docx
  • 专题05 功和功率【考题猜想】(解析版).docx专题05 功和功率【考题猜想】(解析版).docx
  • 专题05 功和功率【考题猜想】(原卷版).docx专题05 功和功率【考题猜想】(原卷版).docx
  • 专题05 功和功率【考点清单】(解析版).docx专题05 功和功率【考点清单】(解析版).docx
  • 专题05 功和功率【考点清单】(原卷版).docx专题05 功和功率【考点清单】(原卷版).docx
  • 专题05 分类打靶函数应用与函数模型(练习)(解析版).docx专题05 分类打靶函数应用与函数模型(练习)(解析版).docx
  • 专题05 分类打靶函数应用与函数模型(练习)(原卷版).docx专题05 分类打靶函数应用与函数模型(练习)(原卷版).docx
  • 专题05 分类打靶函数应用与函数模型(6大核心考点)(讲义)(解析版).docx专题05 分类打靶函数应用与函数模型(6大核心考点)(讲义)(解析版).docx
  • 专题05 分类打靶函数应用与函数模型(6大核心考点)(讲义)(原卷版).docx专题05 分类打靶函数应用与函数模型(6大核心考点)(讲义)(原卷版).docx
  • 专题05 分段函数研究(教师版).docx专题05 分段函数研究(教师版).docx
  • 专题05 分段函数研究(学生版).docx专题05 分段函数研究(学生版).docx
  • 专题05 分式篇(解析版).docx专题05 分式篇(解析版).docx
  • 专题05 分式篇(原卷版).docx专题05 分式篇(原卷版).docx
  • 专题05 分式方程(解析版).docx专题05 分式方程(解析版).docx
  • 专题05 分式方程(原卷版).docx专题05 分式方程(原卷版).docx
  • 专题05 函数的概念-【中职专用】中职高考数学二轮复习专项突破.docx专题05 函数的概念-【中职专用】中职高考数学二轮复习专项突破.docx
  • 专题05 函数的最大(小)值(含解析)-2021-2022学年高一数学重难点手册(函数的概念与性质篇人教A版2019必修第一册).docx专题05 函数的最大(小)值(含解析)-2021-2022学年高一数学重难点手册(函数的概念与性质篇人教A版2019必修第一册).docx
  • 专题05 函数 5.9函数零点 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.9函数零点 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.8函数图像 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.8函数图像 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题05 函数 5.8函数图像 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.8函数图像 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.7对称性与周期性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.7对称性与周期性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.5单调性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.5单调性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题05 函数 5.5单调性 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.5单调性 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.4对数函数 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.4对数函数 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.3指数函数 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.3指数函数 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1