分享
分享赚钱 收藏 举报 版权申诉 / 29

类型2022年人教版九年级数学上册第二十三章旋转专题测试试题(含答案解析版).docx

  • 上传人:a****
  • 文档编号:695727
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:29
  • 大小:688.04KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 年人教版 九年级 数学 上册 第二十三 旋转 专题 测试 试题 答案 解析
    资源描述:

    1、人教版九年级数学上册第二十三章旋转专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列四个图形中,中心对称图形是()ABCD2、如图,菱形对角线交点与坐标原点重合,点,则点的坐标为()ABCD3、

    2、在图中,将方格纸中的图形绕O点顺时针旋转90得到的图形是()ABCD4、如图,已知正方形的边长为4,以点C为圆心,2为半径作圆,P是上的任意一点,将点P绕点D按逆时针方向旋转,得到点Q,连接,则的最大值是()A6BCD5、把四张扑克牌所摆放的顺序与位置如下,小杨同学选取其中一张扑克牌把他颠倒后在放回原来的位置,那么扑克牌的摆放顺序与位置都没变化,那么小杨同学所选的扑克牌是()ABCD6、如图,将正方形绕点A顺时针旋转,得到正方形,的延长线交于点H,则的大小为()ABCD7、小明把一副三角板按如图所示叠放在一起,固定三角板ABC,将另一块三角板DEF绕公共顶点B顺时针旋转(旋转角度不超过180)

    3、若两块三角板有一边平行,则三角板DEF旋转的度数可能是()A15或45B15或45或90C45或90或135D15或45或90或1358、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接则在点M运动过程中,线段长度的最小值是()AB1C2D9、下列几何图形中,是轴对称图形但不是中心对称图形的是()A梯形B等边三角形C平行四边形D矩形10、以原点为中心,将点P(4,5)按逆时针方向旋转90,得到的点Q所在的象限为()A第一象限B第二象限C第三象限D第四象限第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在RtABC中,

    4、ACBC1,D是斜边AB上一点(与点A,B不重合),将BCD绕着点C旋转90到ACE,连结DE交AC于点F,若AFD是等腰三角形,则AF的长为 _2、如图,菱形的边长为,边在轴上,若将菱形绕点逆时针旋转75,得到菱形,则点的对应点的坐标为_3、如图,在平面直角坐标系中,等腰直角三角形OAB,点O为坐标原点,点B在x轴上,点A的坐是(1,1)若将绕点O顺时针方向依次旋转45后得到,可得,则的坐标是_4、如图,在平面直角坐标系中,由绕点顺时针旋转而得,则所在直线的解析式是_5、如图,正方形ABCD的边长为6,点E在边CD上以点A为中心,把ADE顺时针旋转90至ABF的位置若DE2,则FE_三、解答

    5、题(5小题,每小题10分,共计50分)1、如图,点在射线上,如果绕点按逆时针方向旋转到,那么点的位置可以用表示(1)按上述表示方法,若,则点的位置可以表示为_;(2)在(1)的条件下,已知点的位置用表示,连接、求证:2、如图,P是等边内的一点,且,将绕点B逆时针旋转,得到(1)旋转角为_度;(2)求点P与点Q之间的距离;(3)求的度数;(4)求的面积3、如图,平面直角坐标系中,ABC的三个顶点的坐标分别为A(1,2),B(2,4),C(4,1)(1)在平面直角坐标系中画出与ABC关于点P(1,0)成中心对称的ABC,并分别写出点A,B,C的坐标;(2)如果点M(a,b)是ABC边上(不与A,B

    6、,C重合)任意一点,请写出在ABC上与点M对应的点M的坐标4、如图,点P是正方形ABCD内部的一点,APB90,将RtAPB绕点A逆时针方向旋转90得到ADQ,QD、BP的延长线相交于点E(1)判断四边形APEQ的形状,并说明理由;(2)若正方形ABCD的边长为10,DE2,求BE的长5、正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且EDF=45.将DAE绕点D逆时针旋转90,得到DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长-参考答案-一、单选题1、D【解析】【分析】根据中心对称图形的概念结合各图形的特点求解【详解】解:A、不是中心对称图形,不符合题意; B、不是

    7、中心对称图形,不符合题意; C、不是中心对称图形,不符合题意; D、是中心对称图形,符合题意 故选:D【考点】本题考查了中心对称图形与轴对称图形的概念判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合2、B【解析】【分析】根据菱形的中心对称性,A、C坐标关于原点对称,利用横反纵也反的口诀求解即可【详解】菱形是中心对称图形,且对称中心为原点,A、C坐标关于原点对称,C的坐标为,故选C【考点】本题考查了菱形的中心对称性质,原点对称,熟练掌握菱形的性质,关于原点对称点的坐标特点是解题的关键3、B【解析】【分析】根据旋转的性质,找出图中三角形的关键处(旋转中心)按顺时针方向旋转90后的形

    8、状即可选择答案【详解】根据旋转的性质可知,绕O点顺时针旋转90得到的图形是 故选B【考点】本题考查了旋转的性质旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变4、A【解析】【分析】连接CP,AQ,以A为圆心,以AQ为半径画圆,延长BA交于E根据正方形的性质,旋转的性质,角的和差关系,全等三角形的判定定理和性质求出AQ的长度,根据三角形三边关系确定当点Q与点E重合时,BQ取得最大值,最后根据线段的和差关系计算即可【详解】解:如下图所示,连接CP,AQ,以A为圆心,以AQ为半径画圆,延长BA交于E正方形ABCD的边长为4,的半径为2,AD=CD=AB=4,ADC=90,CP=2点P

    9、绕点D按逆时针方向旋转90得到点Q,QDP=90,QD=PDADC=QDPADC-QDC=QDP-QDC,即ADQ=CDPAQ=CP=2AE=AQ=2P是上任意一点,点Q在上移动当点Q与点E重合时,BQ取得最大值为BEBE=AE+AB=6故选:A【考点】本题考查正方形的性质,旋转的性质,角的和差关系,全等三角形的判定定理和性质,三角形三边关系,线段的和差关系,综合应用这些知识点是解题关键5、D【解析】【分析】根据题意,图形是中心对称图形即可得出答案【详解】由题意可知,图形是中心对称图形,可得答案为D,故选:D【考点】本题考查了图形的中心对称的性质,掌握中心图形的性质是解题的关键6、B【解析】【

    10、分析】根据旋转的性质,求得BAE=38,根据正方形的性质,求得DBA=45,ABH=135,利用四边形的内角和定理计算即可【详解】根据旋转的性质,得BAE=38,四边形ABCD是正方形,DBA=45,ABH=135,四边形AEFG是正方形,E=90,DHE=360-90-38-135=97,故选B【考点】本题考查了旋转的性质,正方形的性质,四边形的内角和定理,熟练掌握正方形的性质,旋转的性质是解题的关键7、D【解析】【分析】分四种情况讨论,由平行线的性质和旋转的性质可求解【详解】解:设旋转的度数为,若DEAB,则E=ABE=90,=90-30-45=15,若BEAC,则ABE=180-A=12

    11、0,=120-30-45=45,若BDAC,则ACB=CBD=90,=90,当点C,点B,点E共线时,ACB=DEB=90,ACDE,=180-45=135,综上三角板DEF旋转的度数可能是15或45或90或135故选:D【考点】本题考查了旋转的性质,平行线的性质,利用分类讨论思想解决问题是本题的关键8、A【解析】【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出HBN=MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明MBGNBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MGCH时最短,再根据BCH=30求解即可【详解】解:如图,取

    12、BC的中点G,连接MG,旋转角为60,MBH+HBN=60,又MBH+MBC=ABC=60,HBN=GBM,CH是等边ABC的对称轴,HB=AB,HB=BG,又MB旋转到BN,BM=BN,在MBG和NBH中,MBGNBH(SAS),MG=NH,根据垂线段最短,MGCH时,MG最短,即HN最短,此时BCH=60=30,CG=AB=5=2.5,MG=CG=,HN=,故选A【考点】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点9、B【解析】【分析】根据轴对称图形和中心对称图形的定义以及性质对各项进行分析即可【详解

    13、】A、梯形不是轴对称图形,也不是中心对称图形,故本选项说法错误;B、等边三角形是轴对称图形,但不是中心对称图形,故本选项说法正确;C、平行四边形不是轴对称图形,是中心对称图形,故本选项说法错误;D、矩形是轴对称图形,也是中心对称图形,故本选项说法错误故选:B【考点】本题考查了轴对称图形和中心对称图形的判断,掌握轴对称图形和中心对称图形的定义以及性质是解题的关键10、B【解析】【分析】根据旋转的性质,以原点为中心,将点P(4,5)按逆时针方向旋转90,即可得到点Q所在的象限【详解】解:如图,点P(4,5)按逆时针方向旋转90,得点Q所在的象限为第二象限故选:B【考点】本题考查了坐标与图形变化-旋

    14、转,解决本题的关键是掌握旋转的性质二、填空题1、或【解析】【分析】RtABC中,AC=BC=1,所以CAB=B=45,ECD=90,CDE=CED=45,分两种情况讨论AF=FD时,AF=AC=1=;AF=AD时,AF=【详解】解:RtABC中,AC=BC=1,CAB=B=45,BCD绕着点C旋转90到ACE,ECD=90,CDE=CED=45,AF=FD时,FDA=FAD=45,AFD=90,CDA=45+45=90=ECD=DAE,EC=CD,四边形ADCE是正方形,AD=DC,AF=AC=1=;AF=AD时,ADF=AFD=67.5,CDB=180-ADE-EDC=180-67.5-45

    15、=67.5,DCB=180-67.5-45=67.5,DCB=CDB,BD=CB=1,AD=AB-BD=,AF=AD=,故答案为:或【考点】本题考查了旋转的性质,正确利用旋转原理和直角三角形的性质,进行分类讨论是解题的关键2、【解析】【分析】根据菱形的性质可得出AOC=60,则三角形OAC为等边三角形,即AC=,根据菱形对角线的性质可得出AOE=30,根据勾股定理可得OE, OB,再根据旋转的性质可得OB=OB1,B1OF=45,根据勾股定理即可得出OF与B1F的长度,即可得出答案【详解】解:如图,连接AC与OB相交于点E,过点B1作B1Fx轴,垂足为F,四边形OABC为菱形,OA=OC,AO

    16、C是等边三角形,OC=OA=AC=,ACOB,在RtOAE中,OA=,AE=AC=,OE=AE=,OB=,COB=AOC=30,BOB1=75,B1OF=180-60-BOB1=180-60-75=45,在RtB1OF中,OB1=OB=,OF=B1F,OF2+B1F2=OB12,可得OF=B1F=,点B1在第二象限,点B1的坐标为故答案为:【考点】本题主要考查了菱形及旋转的性质,熟练应用相关性质进行计算是解决本题的关键3、【解析】【分析】根据题意求出:,的坐标,推导出每旋转8次为一个循环,再由,求出对应的点坐标即可【详解】解:根据题意得:, ,可推导一般性规律:点坐标的变化每旋转8次为一个循环

    17、, ,的坐标是 故答案为:【考点】本题主要考查了图形的旋转,点坐标的规律探究解题的关键在于推导出一般性规律4、【解析】【分析】过点C作CDx轴于点D,易知ACDBAO(AAS),已知A(2,0),B(0,1),从而求得点C坐标,设直线AC的解析式为y=kx+b,将点A,点C坐标代入求得k和b,从而得解【详解】解: 过点作轴于点,BOA=ADC=90.BAC=90,BAO+CAD=90.ABO+BAO=90,CAD=ABO.AB=AC,.设直线的解析式为,将点,点坐标代入得直线的解析式为故答案为【考点】本题是几何图形旋转与待定系数法求一次函数解析式的综合题,难度中等5、【解析】【分析】由旋转的性

    18、质可得BF=DE=2,D=ABF=90,在直角EFC中,由勾股定理可求解【详解】解:把ADE顺时针旋转90得ABF,BF=DE=2,D=ABF=90,ABC+ABF=180,点F,点B,点C共线,在直角EFC中,EC=6-2=4,CF=BC+BF=8根据勾股定理得:EF=,故答案为:【考点】本题考查了旋转的性质,正方形的性质,勾股定理,灵活运用这些性质解决问题是本题的关键三、解答题1、 (1)(3,37)(2)见解析【解析】【分析】(1)根据点的位置定义,即可得出答案;(2)画出图形,证明AOABOA(SAS),即可由全等三角形的性质,得出结论(1)解:由题意,得A(a,n),a=3,n=37

    19、,A(3,37),故答案为:(3,37);(2)证明:如图,B(3,74),AOA=37,AOB=74,OA= OB=3,AOB=AOB-AOA=74-37=37,OA=OA,AOABOA(SAS),AA=AB【考点】本题考查全等三角形的判定与性质,新定义,旋转的性质,熟练掌握全等三角形的判定与性质是解题的关键2、 (1)60(2)4(3)150(4)9【解析】【分析】(1)根据QCB是PAB绕点B逆时针旋转得到,可知ABC为旋转角即可得出答案,(2)连接PQ,根据等边三角形得性质得ABC60,BABC,由旋转的性质得BPBQ,PBQABC60,CQAP5,BPBQ4,PBQ60,于是可判断P

    20、BQ是等边三角形,所以PQPB4;(3)先利用勾股定理的逆定理证明PCQ是直角三角形,且QPC90,再加上BPQ60,然后计算BPQ+QPC即可(4)由直角三角形的性质可求CH,PH的长,由勾股定理和三角形的面积公式可求解(1)ABC是等边三角形,ABC60, QCB是PAB绕点B逆时针旋转得到的,旋转角为60故答案为:60;(2)连接PQ,如图1,ABC是等边三角形,ABC60,BABC,QCB是PAB绕点B逆时针旋转得到的,QCBPAB,BPBQ,PBQABC60,CQAP5,BPBQ4,PBQ60,PBQ是等边三角形,PQPB4;(3)QC5,PC3,PQ4,而32+4252,PC2+P

    21、Q2CQ2,PCQ是直角三角形,且QPC90,PBQ是等边三角形,BPQ60,BPCBPQ+QPC60+90150;(4)如图2,过点C作CHBP,交BP的延长线于H,BPC150,CPH30,CHPC,PHHC,BH4,BC2BH2+CH2,SABCBC2,SABC)9【考点】本题考查了旋转的性质,等边三角形的判定与性质,全等三角形的性质,勾股定理的逆定理,掌握旋转的性质是本题的关键3、(1)ABC见解析,A(3,2),B(4,4),C(6,1);(2)M(2a,b)【解析】【分析】(1)分别作出A,B,C的对应点A、B、C,然后顺次连接可得ABC,再根据所作图形写出坐标即可(2)利用中点坐

    22、标公式计算即可【详解】解:(1)ABC如图所示,A(3,2),B(4,4),C(6,1);(2)设M(m,n),则有,m2a,nb,M(2a,b)【考点】本题考查作图中心对称,解题的关键是熟练掌握中心对称的性质,正确找出对应点位置4、 (1)正方形,见解析(2)14【解析】【分析】(1)利用旋转即可得到,再根据全等三角形的性质即可求证四边形APEQ的形状(2)设,则,利用勾股定理可求出,进而可求出BE的长(1)解:四边形APEQ是正方形,理由如下:RtAPB绕点A逆时针方向旋转90得到ADQ,在四边形APEQ中,四边形APEQ为矩形,矩形APEQ是正方形(2)设则由(1)以及题意可知:,在中,

    23、即,解得(负值舍去),【考点】本题考查正方形的性质、旋转的性质以及勾股定理,熟练掌握正方形基本性质以及旋转性质是解题的关键5、 (1)见解析;(2).【解析】【分析】(1)由折叠可得DE=DM,EDM为直角,可得出EDF+MDF=90,由EDF=45,得到MDF为45,可得出EDF=MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;(2)由第一问的全等得到AE=CM=1,正方形的边长为3,用AB-AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM-FM=BM-EF=4-x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长【详解】(1)DAE逆时针旋转90得到DCM,DE=DM ,EDM=90,EDF + FDM=90,EDF=45,FDM =EDM=45,DF= DF,DEFDMF,EF=MF(2) 设EF=x, AE=CM=1 , BF=BM-MF=BM-EF=4-x, EB=2,在RtEBF中,由勾股定理得,即,解得,.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年人教版九年级数学上册第二十三章旋转专题测试试题(含答案解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-695727.html
    相关资源 更多
  • 专题05 动词和非谓语动词专项讲练-2023中考英语二轮复习讲练测(广东专用).docx专题05 动词和非谓语动词专项讲练-2023中考英语二轮复习讲练测(广东专用).docx
  • 专题05 动词和非谓语动词专项测试-2023中考英语二轮复习讲练测(广东专用).docx专题05 动词和非谓语动词专项测试-2023中考英语二轮复习讲练测(广东专用).docx
  • 专题05 动点折叠类问题中函数及其综合题型(学生版)学霸冲冲冲shop348121278.taobao.com.docx专题05 动点折叠类问题中函数及其综合题型(学生版)学霸冲冲冲shop348121278.taobao.com.docx
  • 专题05 功和功率【考题猜想】(解析版).docx专题05 功和功率【考题猜想】(解析版).docx
  • 专题05 功和功率【考题猜想】(原卷版).docx专题05 功和功率【考题猜想】(原卷版).docx
  • 专题05 功和功率【考点清单】(解析版).docx专题05 功和功率【考点清单】(解析版).docx
  • 专题05 功和功率【考点清单】(原卷版).docx专题05 功和功率【考点清单】(原卷版).docx
  • 专题05 分类打靶函数应用与函数模型(练习)(解析版).docx专题05 分类打靶函数应用与函数模型(练习)(解析版).docx
  • 专题05 分类打靶函数应用与函数模型(练习)(原卷版).docx专题05 分类打靶函数应用与函数模型(练习)(原卷版).docx
  • 专题05 分类打靶函数应用与函数模型(6大核心考点)(讲义)(解析版).docx专题05 分类打靶函数应用与函数模型(6大核心考点)(讲义)(解析版).docx
  • 专题05 分类打靶函数应用与函数模型(6大核心考点)(讲义)(原卷版).docx专题05 分类打靶函数应用与函数模型(6大核心考点)(讲义)(原卷版).docx
  • 专题05 分段函数研究(教师版).docx专题05 分段函数研究(教师版).docx
  • 专题05 分段函数研究(学生版).docx专题05 分段函数研究(学生版).docx
  • 专题05 分式篇(解析版).docx专题05 分式篇(解析版).docx
  • 专题05 分式篇(原卷版).docx专题05 分式篇(原卷版).docx
  • 专题05 分式方程(解析版).docx专题05 分式方程(解析版).docx
  • 专题05 分式方程(原卷版).docx专题05 分式方程(原卷版).docx
  • 专题05 函数的概念-【中职专用】中职高考数学二轮复习专项突破.docx专题05 函数的概念-【中职专用】中职高考数学二轮复习专项突破.docx
  • 专题05 函数的最大(小)值(含解析)-2021-2022学年高一数学重难点手册(函数的概念与性质篇人教A版2019必修第一册).docx专题05 函数的最大(小)值(含解析)-2021-2022学年高一数学重难点手册(函数的概念与性质篇人教A版2019必修第一册).docx
  • 专题05 函数 5.9函数零点 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.9函数零点 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.8函数图像 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.8函数图像 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题05 函数 5.8函数图像 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.8函数图像 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.7对称性与周期性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.7对称性与周期性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.5单调性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.5单调性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题05 函数 5.5单调性 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.5单调性 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.4对数函数 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.4对数函数 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.3指数函数 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.3指数函数 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1