2022年人教版九年级数学上册第二十四章圆重点解析试题(含详细解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版 九年级 数学 上册 第二 十四 重点 解析 试题 详细
- 资源描述:
-
1、人教版九年级数学上册第二十四章圆重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知O的半径为4,M是O内一点,且OM2,则过点M的所有弦中,弦长是整数的共有()A1条B2条C3条D4条2、
2、如图,O的半径为5,弦AB=8,P是弦AB上的一个动点(不与A,B重合),下列符合条件的OP的值是()A6.5B5.5C3.5D2.53、如图,在中,AB=AC=5,点在上,且,点E是AB上的动点,连结,点,G分别是BC,DE的中点,连接,当AG=FG时,线段长为()ABCD44、如图,四边形ABCD内接于O,点I是ABC的内心,AIC=124,点E在AD的延长线上,则CDE的度数为()A56B62C68D785、如图,点A,B,C,D,E是O上5个点,若ABAO2,将弧CD沿弦CD翻折,使其恰好经过点O,此时,图中阴影部分恰好形成一个“钻戒型”的轴对称图形,则“钻戒型”(阴影部分)的面积为(
3、)AB43C44D6、如图,已知是的两条切线,A,B为切点,线段交于点M给出下列四种说法:;四边形有外接圆;M是外接圆的圆心,其中正确说法的个数是()A1B2C3D47、已知点在上则下列命题为真命题的是()A若半径平分弦则四边形是平行四边形B若四边形是平行四边形则C若则弦平分半径D若弦平分半径则半径平分弦8、以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内O上的一点,若DAB25,则OCD()A50B40C70D309、如图,AB为的直径,C,D为上的两点,若,则的度数为()ABCD10、如图,AB是O的直径,C,D是O上位于AB异侧的两点下列四个角中,一定与ACD互
4、余的角是()AADCBABDCBACDBAD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个扇形的圆心角是120它的半径是3cm则扇形的弧长为_cm2、如图,在中,半径,是半径上一点,且,是上的两个动点,是的中点,则的长的最大值等于_3、如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形若等边三角形的边长为,则勒洛三角形的周长为_4、数学课上,老师让学生用尺规作图画RtABC,使其斜边ABc,一条直角边BCa小明的作法如图所示,你认为小明这种作法中判断ACB是直角的依据是_5、如图,圆锥的母线长为1
5、0cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为_cm(结果用表示)三、解答题(5小题,每小题10分,共计50分)1、如图所示,AB是O的直径,点C为O上一点,过点B作BDCD,垂足为点D,连结BCBC平分ABD求证:CD为O的切线2、如图,为的直径,C为上一点,弦的延长线与过点C的切线互相垂直,垂足为D,连接(1)求的度数;(2)若,求的长3、如图,在四边形中,.是四边形内一点,且.求证:(1);(2)四边形是菱形.4、如图,已知四边形 ABCD 内接于O,且已知ADC=120;请仅用无刻度直尺作出一个30的圆周角要求:(1)保留作图痕迹,写出作法,写明答案;(2)证明你的作法的正确
6、性5、如图1,正方形ABCD中,点P、Q是对角线BD上的两个动点,点P从点B出发沿着BD以1cm/s的速度向点D运动;点Q同时从点D出发沿着DB以2cm的速度向点B运动设运动的时间为xs,AQP的面积为ycm2,y与x的函数图象如图2所示,根据图象回答下列问题:(1)a (2)当x为何值时,APQ的面积为6cm2;(3)当x为何值时,以PQ为直径的圆与APQ的边有且只有三个公共点-参考答案-一、单选题1、C【解析】【分析】过点M作ABOM交O于点A、B,根据勾股定理求出AM,根据垂径定理求出AB,进而得到答案【详解】解:过点M作ABOM交O于点A、B,连接OA,则AMBMAB,在RtAOM中,
7、AM,AB2AM,则过点M的所有弦8,则弦长是整数的共有长度为7的两条,长度为8的一条,共三条,故选:C【考点】本题考查了垂径定理,勾股定理,掌握垂直于选的直径平分这条弦,并平分弦所对的两条弧是解题关键2、C【解析】【分析】连接OB,作OMAB与M根据垂径定理和勾股定理,求出OP的取值范围即可判断【详解】解:连接OB,作OMAB与MOMAB,AM=BM=AB=4,在直角OBM中,OB=5,BM=4,故选:C【考点】本题考查了垂径定理、勾股定理,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解3、A【解析】【分析】连接DF,EF,过点F作FNAC,FMAB,结
8、合直角三角形斜边中线等于斜边的一半求得点A,D,F,E四点共圆,DFE=90,然后根据勾股定理及正方形的判定和性质求得AE的长度,从而求解【详解】解:连接DF,EF,过点F作FNAC,FMAB在中,点G是DE的中点,AG=DG=EG又AG=FG点A,D,F,E四点共圆,且DE是圆的直径DFE=90在RtABC中,AB=AC=5,点是BC的中点,CF=BF=,FN=FM=又FNAC,FMAB,四边形NAMF是正方形AN=AM=FN=又,NFDMFEME=DN=AN-AD=AE=AM+ME=3在RtDAE中,DE=故选:A【考点】本题考查直径所对的圆周角是90,四点共圆及正方形的判定和性质和用勾股
9、定理解直角三角形,掌握相关性质定理正确推理计算是解题关键4、C【解析】【分析】由点I是ABC的内心知BAC=2IAC、ACB=2ICA,从而求得B=180(BAC+ACB)=1802(180AIC),再利用圆内接四边形的外角等于内对角可得答案【详解】解:点I是ABC的内心,BAC=2IAC、ACB=2ICA,AIC=124,B=180(BAC+ACB)=1802(IAC+ICA)=1802(180AIC)=68,又四边形ABCD内接于O,CDE=B=68,故选:C【考点】本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质5、A【解析】【分析】连接CD、OE
10、,根据题意证明四边形OCED是菱形,然后分别求出扇形OCD和菱形OCED以及AOB的面积,最后利用割补法求解即可【详解】解:连接CD、OE,由题意可知OCODCEED,弧弧,S扇形ECDS扇形OCD,四边形OCED是菱形,OE垂直平分CD,由圆周角定理可知CODCED120,CD222,ABOAOB2,AOB是等边三角形,SAOB22,S阴影2S扇形OCD2S菱形OCED+SAOB2(22)+2(2)+3,故选:A【考点】此题考查了菱形的性质和判定,等边三角形的性质,圆周角定理,求解圆中阴影面面积等知识,解题的关键是根据题意做出辅助线,利用割补法求解6、C【解析】【分析】由切线长定理判断,结合
11、等腰三角形的性质判断,利用切线的性质与直角三角形的斜边上的中线等于斜边的一半,判断,利用反证法判断【详解】如图, 是的两条切线, 故正确, 故正确, 是的两条切线, 取的中点,连接,则 所以:以为圆心,为半径作圆,则共圆,故正确, M是外接圆的圆心, 与题干提供的条件不符,故错误,综上:正确的说法是个,故选C【考点】本题考查的是切线长定理,三角形的外接圆,四边形的外接圆,掌握以上知识是解题的关键7、B【解析】【分析】根据圆的有关性质、垂径定理及其推论、特殊平行四边形的判定与性质依次对各项判断即可【详解】A半径平分弦,OBAC,AB=BC,不能判断四边形OABC是平行四边形,假命题;B四边形是平
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
