分享
分享赚钱 收藏 举报 版权申诉 / 21

类型2022年解析卷京改版八年级数学上册期末专题测试试题 卷(Ⅲ)(解析版).docx

  • 上传人:a****
  • 文档编号:710972
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:21
  • 大小:459.49KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年解析卷京改版八年级数学上册期末专题测试试题 卷解析版 2022 解析 改版 八年 级数 上册 期末 专题 测试 试题
    资源描述:

    1、京改版八年级数学上册期末专题测试试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列计算正确的是()A2B2C2D22、下列图形中,是轴对称图形的是()ABCD3、约分:()ABCD4、下列说法

    2、:数轴上的任意一点都表示一个有理数;若、互为相反数,则;多项式是四次三项式;几个有理数相乘,如果负因数有奇数个,则积为负数,其中正确的有()A个B个C个D个5、若三角形的三边为a,b,c、满足a2+b2+c2+506a+8b+10c,此三角形的形状是()A锐角三角形B直角三角形C钝角三角形D不确定二、多选题(5小题,每小题4分,共计20分)1、在直角坐标系中,等边三角形的顶点A,B的坐标分别是,则顶点C的坐标可能是()ABCD2、观察图中尺规作图痕迹,下列结论正确的是()APQ为APB的平分线BPA=PBC点A、B到PQ的距离不相等DAPQ=BPQ3、下列结论中不正确的是()A数轴上任一点都表

    3、示唯一的有理数B数轴上任一点都表示唯一的无理数C两个无理数之和一定是无理数D数轴上任意两点之间还有无数个点4、下列命题中,真命题为()A等腰三角形两腰上的高相等B三角形的中线都是过三角形的某一个顶点,且平分对边C在ABC中,若A=B-C,则ABC是直角三角形D等腰三角形的高、中线、角平分线互相重合5、如图,已知,下列结论正确的有()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,将一个长方形纸片沿折叠,使C点与A点重合,若,则线段的长是_2、若将三个数,表示在数轴上,则被如图所示的墨迹覆盖的数是_.3、如图,已知AC与BF相交于点E,ABCF,点E为BF中

    4、点,若CF8,AD5,则BD_4、对于任意不相等的两个数a,b,定义一种运算如下:,如那么_5、已知,则_四、解答题(5小题,每小题8分,共计40分)1、解分式方程:2、解方程:(1)(2)3、(1)计算:;(2)因式分解:.4、平面直角坐标系中,点坐标为,分别是轴,轴正半轴上一点,过点作轴,点在第一象限,连接交轴于点,连接(1)请通过计算说明;(2)求证;(3)请直接写出的长为 5、先观察下列等式,再回答问题:;(1)根据上面三个等式,请猜想的结果(直接写出结果)(2)根据上述规律,解答问题:设,求不超过的最大整数是多少?-参考答案-一、单选题1、A【解析】【分析】根据算数平方根的定义可判断

    5、:若一个正数的平方等于a,则这个正数就是a的算数平方根【详解】解:A、,选项正确,符合题意;B、,选项错误,不符合题意;C、,选项错误,不符合题意;D、,选项错误,不符合题意;故选:A【考点】本题考查了算术平方根的定义,解题的关键是注意区别算数平方根和平方根2、D【解析】【分析】根据“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”判断即可得【详解】解:根据题意,A、B、C选项中均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;D选项能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称

    6、图形;故选:D【考点】本题主要考查轴对称图形,解题的关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴3、A【解析】【分析】先进行乘法运算,然后约去分子分母的公因式即可得到答案.【详解】原式=,故选A.【考点】本题主要考查分式的乘法运算法则,掌握约分,是解题的关键.4、C【解析】【分析】数轴上的点可以表示无理数,所以错误;若a,b互为相反数则a+b=0,则正确;是常数项,所以错误;根据有理数的乘法法则可判断正确【详解】数轴上的点既可以表示有理数,也可以表示无理数,所以错误;若a,b互为相反数则a+b=0,则正确;是常数项,是三次三项式,

    7、故错误;根据有理数的乘法法则可判断正确.故正确的有,共2个故选C【考点】本题考查了实数与数轴、相反数、多项式、有理数的乘法,熟记概念是解题的关键5、B【解析】【分析】已知等式变形后,利用完全平方公式化简,利用非负数的性质求出a,b,c的值,即可做出判断【详解】解:根据题意得:a2+b2+c2+50-6a-8b-10c=0,(a3)2(b5)2(c5)20,a30,b50,c50,a3,b4,c5,a2b2=c2,则三角形形状为直角三角形故选:B【考点】此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键二、多选题1、AC【解析】【分析】根据等边三角形的性质得到BC=AB=2,取AB的中

    8、点D,过点D作AB的垂线,在垂线上取点C,使BC=AB,AD=BD=1,利用勾股定理求出CD的长,由此得到答案【详解】解:等边三角形的顶点A,B的坐标分别是,BC=AB=2,取AB的中点D,过点D作AB的垂线,在垂线上取点C,使BC=AB,AD=BD=1,顶点C的坐标可能是或,故选:AC【考点】此题考查等边三角形的性质,平面直角坐标系中点的坐标,勾股定理,熟记等边三角形的性质是解题的关键2、ABD【解析】【分析】根据图形的画法得出PQ是APB的角平分线,再根据尺规作图的画法结合等腰三角形的性质逐项分析四个选项即可得出结论【详解】解:根据尺规作图的画法可知:PQ是APB的角平分线A、PQ是APB

    9、的平分线,原选项正确;B、根据角平分线的作法得PA=PB,原选项正确;C、PA=PB,PQ是APB的平分线,PQAB,PQ平分AB,点A、B到PQ的距离相等,原选项错误;D、PQ是APB的平分线,APQ=BPQ,原选项正确故选:ABD【考点】本题考查了尺规作图中的作角的平分线以及等腰三角形的性质,本题属于基础题,难度不大,牢记尺规作图的方法和步骤是关键3、ABC【解析】【分析】根据实数与数轴上的点的对应关系和无理数的运算进行分析判断【详解】A选项:数轴上的点与实数是一一对应的,故选项结论错误,符合题意;B选项:数轴上的点与实数是一一对应的,故选项结论错误,符合题意;C选项:如,结果是有理数,故

    10、选项结论错误,符合题意;D选项:数轴上任意两点之间还有无数个点,故选项结论正确,不符合题意故选:ABC【考点】考查了实数与实数的运算,解题关键是利用了实数的运算与实数与数轴的对应关系4、ABC【解析】【分析】根据三角形的面积,等腰三角形三线合一的性质,三角形中线的定义对各选项分析判断后利用排除法求解【详解】解:A、根据三角形的面积两腰相等,所以腰上的高相等,故原命题为真命题;B、三角形的中线都是过三角形的某一个顶点,且平分对边,故原命题为真命题;C、在ABC中,若A=B-C,即A+C =B,A+B+C=180,2B =180,即B =90,则ABC是直角三角形,故原命题为真命题;D、等腰三角形

    11、底边上的高、底边上的中线、顶角的角平分线互相重合,故原命题为假命题;故选:ABC【考点】本题综合考查了等腰三角形的性质、三角形中线的定义、三角形内角和定理,熟练掌握并灵活运用这些知识是解决本题的关键5、ACD【解析】【分析】只要证明ABEACF,ANCAMB,利用全等三角形的性质即可一一判断【详解】解:在ABE和ACF中,ABEACF(AAS),BAECAF,BECF,ABAC,BAEBACCAFBAC,即12,故C正确;在ACN和ABM中,ACNABM(ASA),故D正确;CNBMCFBE,EMFN,故A正确,CD与DN的大小无法确定,故B错误故选:ACD【考点】本题考查了全等三角形的判定与

    12、性质,熟记三角形全等的判定方法并准确识图,理清图中各角度之间的关系是解题的关键三、填空题1、【解析】【分析】根据折叠的性质和勾股定理即可求得【详解】解:长方形纸片,根据折叠的性质可得,设,根据勾股定理,即,解得,故答案为:【考点】本题考查折叠与勾股定理能正确表示直角三角形的三边是解题关键2、【解析】【分析】根据数轴确定出被覆盖的数的范围,再根据无理数的大小确定出答案即可【详解】因为,所以,所以,故不在此范围;因为,所以,故在此范围;因为,所以,故不在此范围.所以被墨迹覆盖的数是.故答案为.【考点】此题考查估算无理数的大小,实数与数轴,解题关键在于估算出取值范围.3、3【解析】【分析】利用全等三

    13、角形的判定定理和性质定理可得结果【详解】解:ABCF,A=FCE,B=F,点E为BF中点,BE=FE,在ABE与CFE中,ABECFE(AAS),AB=CF=8,AD=5,BD=3,故答案为:3【考点】本题主要考查了全等三角形的判定定理和性质定理,熟练掌握定理是解答此题的关键4、【解析】【分析】根据定义新运算公式和二次根式的乘法公式计算即可【详解】解:根据题意可得故答案为:【考点】此题考查的是定义新运算和二次根式的化简,掌握定义新运算公式和二次根式的乘法公式是解决此题的关键5、【解析】【分析】根据分式的基本性质,由可得,然后代入式子进行计算即可得解【详解】解:,则故答案为:【考点】本题考查了分

    14、式的化简求值,掌握分式的基本性质并能灵活运用性质进行分式的化简求值是解题的关键四、解答题1、【解析】【分析】两边同乘分式方程的最简公分母,将分式方程转化为整式方程,再解整式方程,然后检验即可【详解】解:两边同乘,得:3x+x+24,解得:,检验,当时,是原方程的解【考点】本题考查了解分式方程,找到最简公分母将分式方程转化为整式方程是解题的关键2、(1);(2)无解【解析】【分析】(1)先通分,把分母变为,再去分母,求出解,最后检验;(2)先通分,把分母变为,再去分母,求出解,最后检验【详解】解:(1),经检验是原方程的解;(2),经检验是增根,原方程无解【考点】本题考查解分式方程,解题的关键是

    15、掌握解分式方程的方法,需要注意结果要检验3、(1);(2)【解析】【分析】(1)原式利用零指数幂、负整数指数幂的性质计算即可求出值;(2)原式利用平方差公式分解即可【详解】解:(1)原式;(2)原式;【考点】此题考查了实数运算与因式分解运用公式法,熟练掌握因式分解的方法是解本题的关键4、(1)证明见解析;(2)证明见解析;(3)【解析】【分析】(1)先根据点A坐标可得OA的长,再根据即可得证;(2)如图(见解析),延长至点,使得,连接,先根据三角形全等的判定定理与性质可得,再根据直角三角形的性质和得出,然后根据三角形全等的判定定理与性质即可得证;(3)先由题(2)两个三角形全等可得,再根据平行

    16、线的性质得出,从而有,然后根据等腰三角形的定义(等角对等边)即可得【详解】(1),即;(2)如图,延长至点,使得,连接,轴,即;(3)由(2)已证,轴(等角对等边)故答案为:5【考点】本题考查了三角形全等的判定定理与性质、等腰三角形的定义、平行线的性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键5、(1)1;(2)不超过m的最大整数是2019【解析】【分析】(1)由的规律写出式子即可;(2)根据题目中的规律计算即可得到结论【详解】解:(1)观察可得,1;(2)m+1+1+1+12019+(+)2019+(1+)2019+(1)=,不超过m的最大整数是2019【考点】本题主要考查了二次根式的性质与化简,解题的关键是找出规律

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年解析卷京改版八年级数学上册期末专题测试试题 卷(Ⅲ)(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-710972.html
    相关资源 更多
  • 专题9 物理说理证明(解析版).docx专题9 物理说理证明(解析版).docx
  • 专题9 物理说理证明(原卷版).docx专题9 物理说理证明(原卷版).docx
  • 专题9 指数型函数取对数问题(解析版).docx专题9 指数型函数取对数问题(解析版).docx
  • 专题9 指数型函数取对数问题(原卷版).docx专题9 指数型函数取对数问题(原卷版).docx
  • 专题9 九全Unit 9 写作主题:音乐和电影--2021-2022学年九年级英语单元话题写作(人教版).docx专题9 九全Unit 9 写作主题:音乐和电影--2021-2022学年九年级英语单元话题写作(人教版).docx
  • 专题9 一元二次方程 安徽省2023年中考数学一轮复习专题训练.docx专题9 一元二次方程 安徽省2023年中考数学一轮复习专题训练.docx
  • 专题9 一元二次方程 2023年中考数学一轮复习专题训练(北京专用).docx专题9 一元二次方程 2023年中考数学一轮复习专题训练(北京专用).docx
  • 专题8:阅读完型限时保分练(二)- 2021年高考英语完形填空解题技巧及真题演练.docx专题8:阅读完型限时保分练(二)- 2021年高考英语完形填空解题技巧及真题演练.docx
  • 专题8:长方形与正方形的面积-2022—2023年三年级数学下册暑假专项提升(西师大版).docx专题8:长方形与正方形的面积-2022—2023年三年级数学下册暑假专项提升(西师大版).docx
  • 专题8:认识钟表-2022—2023学年一年级数学暑假专项提升(西师大版).docx专题8:认识钟表-2022—2023学年一年级数学暑假专项提升(西师大版).docx
  • 专题8:测定金属的电阻率(1) 期末专项汇编-2021-2022年高中物理人教版必修三(2019版) WORD版含解析.docx专题8:测定金属的电阻率(1) 期末专项汇编-2021-2022年高中物理人教版必修三(2019版) WORD版含解析.docx
  • 专题8:测定金属的电阻率(1) 期末专项汇编-2021-2022年高中物理人教版必修三(2019版).docx专题8:测定金属的电阻率(1) 期末专项汇编-2021-2022年高中物理人教版必修三(2019版).docx
  • 专题8:圆柱与圆锥-2022—2023学年六年级数学暑假专项提升(西师大版).docx专题8:圆柱与圆锥-2022—2023学年六年级数学暑假专项提升(西师大版).docx
  • 专题8第二单元食品中的有机化合物同步检测题(三)--高一下学期化学苏教版(2020)必修第二册.docx专题8第二单元食品中的有机化合物同步检测题(三)--高一下学期化学苏教版(2020)必修第二册.docx
  • 专题8第一单元.docx专题8第一单元.docx
  • 专题8将军饮马模型-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(全国通用)(解析版).docx专题8将军饮马模型-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(全国通用)(解析版).docx
  • 专题8将军饮马模型-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(全国通用)(原卷版).docx专题8将军饮马模型-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(全国通用)(原卷版).docx
  • 专题8完形填空(夹叙夹议)江苏高考二模英语分项版汇编.docx专题8完形填空(夹叙夹议)江苏高考二模英语分项版汇编.docx
  • 专题8功和机械能分类汇编---2020和2021年广东广州中考物理模拟考试.docx专题8功和机械能分类汇编---2020和2021年广东广州中考物理模拟考试.docx
  • 专题8分式方程(共32题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期).docx专题8分式方程(共32题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期).docx
  • 专题8分式方程(共32题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第01期).docx专题8分式方程(共32题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第01期).docx
  • 专题8分式方程-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期).docx专题8分式方程-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期).docx
  • 专题8分式方程-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期).docx专题8分式方程-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期).docx
  • 专题8内能分类汇编 ---2020和2021年四川省成都市各地中考物理模拟考试 .docx专题8内能分类汇编 ---2020和2021年四川省成都市各地中考物理模拟考试 .docx
  • 专题8人体健康----2019-2021年江苏省中考生物试题分类汇编 .docx专题8人体健康----2019-2021年江苏省中考生物试题分类汇编 .docx
  • 专题8二次函数与矩形存在性问题-挑战2022年中考数学压轴题之学霸秘笈大揭秘(全国通用)(解析版).docx专题8二次函数与矩形存在性问题-挑战2022年中考数学压轴题之学霸秘笈大揭秘(全国通用)(解析版).docx
  • 专题8二次函数与矩形存在性问题-挑战2022年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx专题8二次函数与矩形存在性问题-挑战2022年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx
  • 专题8三角形(真题15模拟28)-备战2023年中考数学历年真题 1年模拟新题分项详解(重庆专用)【解析版】.docx专题8三角形(真题15模拟28)-备战2023年中考数学历年真题 1年模拟新题分项详解(重庆专用)【解析版】.docx
  • 专题8三角形(真题15模拟28)-备战2023年中考数学历年真题 1年模拟新题分项详解(重庆专用)【原卷版】.docx专题8三角形(真题15模拟28)-备战2023年中考数学历年真题 1年模拟新题分项详解(重庆专用)【原卷版】.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1