分享
分享赚钱 收藏 举报 版权申诉 / 13

类型[26957930]精讲练12二元一次方程组及其解法-2020-2021学年六年级数学寒假精.docx

  • 上传人:a****
  • 文档编号:784788
  • 上传时间:2025-12-14
  • 格式:DOCX
  • 页数:13
  • 大小:278.97KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    26957930
    资源描述:

    1、精讲练12 二元一次方程组及其解法方程是数学中解决问题的基本工具,方程思想是最重要的数学思想之一.一次方程组是初中数学的重要内容,它是在学习了一元一次方程的基础上学习的.显然一次方程组与一元一次方程的区别在于一次方程组可能有不止一个未知数.因此,解一次方程组的基本思想是消元,也就是把二元一次方程组通过消元转化为一元一次方程来解,把多元(不止二元)一次方程组通过消元转化为二元一次方程组或一元一次方程来解.【知识链接】1、二元一次方程的概念含有两个未知数,并且未知项(含有未知数的项)的次数都是1的整式方程叫做二元一次方程.它有三个必备条件:(1)含有两个未知数;(2)未知项的次数都是1;(3)方程

    2、须是整式方程.关于、的二元一次方程的一般形式是(、均为常数且).类似地,含有个未知数(整数),并且未知项(含有未知数的项)的次数都是1的整式方程叫做元一次方程.2、二元一次方程解的概念使二元一次方程左右两边的值相等的一对未知数的值叫做二元一次方程的一个解. 二元一次方程一般会有无数个解.3、二元一次方程组解的概念含有两个未知数,并且未知项的次数都是1的整式方程组叫做二元一次方程组. 它有三个必备条件:(1)含有两个未知数;(2)未知项的次数都是1;(3)方程组须是整式方程组.应注意的是,这些条件是对整个方程组而言的,而不是对其中的每一个方程而言.因此,一方面,两个二元一次方程不一定能组成一个二

    3、元一次方程组,比如就不是二元一次方程组;另一方面,组成二元一次方程组的方程不一定是二元一次方程,比如就可以看作一个简单的二元一次方程组.类似地,含有个未知数(整数),并且未知项的次数都是1的整式方程组叫做元一次方程.4、二元一次方程组的解的概念对于由两个二元一次方程组成的方程组而言,两个方程的公共解叫做这个二元一次方程组的解.一般地,满足一次方程组的所有方程的一组未知数的值,叫做这个一次方程组的解.5、二元一次方程组的解法求一次方程组解的过程称为解一次方程组.解一次方程组的基本思想是:消元.比如可以通过消元将二元一次方程组转化为一元一次方程来解,可以把多元一次方程组通过消元转化为二元一次方程组

    4、或一元一次方程来解.一次方程组的基本解法有:代入消元法、加减消元法.当然,对于一些特殊的一次方程组,我们还可以探索一些特殊的解法(请参考下面的例题).例1(1)方程(a2)x +(|b|-1)y = 3是二元一次方程,试求a、b的取值范围. (2)方程xa-2+(a-3)y = 2是二元一次方程,试求a的值解析:(1)a-2,b1.(2)a=-3例2已知下列三对值:x6x10x10y9y6y1xy62x31y11(1) 哪几对数值使方程xy6的左、右两边的值相等?(2) 哪几对数值是方程组的解? 【典例精讲】例1(1)已知(a2)xb-1by|a|15是关于x、y 的二元一次方程,则a_,b_

    5、(2)二元一次方程3x2y15的正整数解为_例2(1)解方程组分析:对于二元一次方程组,我们一般通过代入法或加减法将其消元转化为一元一次方程来解,有时候针对方程组特点,也可以探索一些特殊解法. 解:法一:由得y=2x-6把代入,得x-2(2x-6)=-2解得x=2把x=2代入,得y=2所以原方程组的解为法二:2,得5x=10 解得x=2将x=2代入,得22y=6解得y=2所以方程组的解为 法三:3,得5x+5y=0,所以y=-x把代入得2x+x=6,所以x=2所以y=-2所以原方程组的解为技巧提升:第一种解法是代入法,第二种解法是加减法,第三种解法可以称为“消去常数项法”,先消去常数项,可以得

    6、到两个未知数之间的倍数关系,这样再代入求解就比较方便了.不管哪一种解法,其基本思想是一致的,那就是消元,将方程组转化为一元一次方程来解.(2) (3)(4) (5)2x3y4xy5的解为_(6)若|2a3b7|与(2a5b1)2互为相反数,则a_,b_例2 解方程组(1)分析:若考虑用加减法,三个方程中,z的系数比较简单,可设法先消去z, + 可以消去z,得到一个只含x,y的方程,进一步 + 2,也可以消去z得到一个只含x,y的方程,这样,就得到了一个关于x、y的二元一次方程组,实现了消元解:+ ,得5x + 5y = 25 +2得5x + 7y = 31 解由、组成的二元一次方程组得把x =

    7、 2,y = 3代入得32 + 23 + z = 13, 解得z = 1原方程组的解是技巧提升:本题选用了加减法,也可以使用代入法,比如将方程变形为,分别代入方程就可以消去未知数x.可见消元仍是解三元(或多元)一次方程组的基本思想,代入法和加减法仍是三元(或多元)一次方程组基本方法(2)例3 若是关于的二元一次方程,则的值为 分析:由题意得,解得, 答案:技巧提升:在这里因为是要求的值,所以也可以考虑用“消去常数项法”来求解:将原方程组化简得 , +得,所以 ,易得例4 若有理数、满足方程,则 分析:先列方程组求出、的值,然后再代入求值解:由题意得,解得,技巧提升:本题列二元一次方程组的依据是

    8、非负数的基本性质:如果几个非负数的和等于0,那么这几个非负数都等于0例5若关于x,y的二元一次方程组的解也是二元一次方程 的解,则k的值为( ) A B C D 分析:将看作常数,解关于、的方程组,即可用的代数式分别表示出、,再代入后面的二元一次方程便可求解由方程组得2x14k,y2k代入,得14k6k6,解得k答案:B技巧提升:若将问题换成“关于x,y的二元一次方程组的解也是二元一次方程 的解,求k的值”则应注意考虑解题顺序,仍然先解由方程、组成的方程组比较简便例6若方程组 的解是 则方程组的解是()A B C D分析:题目提供了第一个方程组的解而让我们求第二个方程组的解,这说明这两个方程组

    9、之间必然有密切的联系,可考虑用换元法来解设,则第2个方程组可化为可得 所以,解得答案:A技巧提升:解二元一次方程组的基本思想是消元,代入法和加减法是两种基本解法对于特殊的方程组,我们还可以探究得到一些特殊解法,比如本题的解法可以称为换元法例7 已知, 则的值等于 . 分析:设=,则可得方程组,解得,设,则,所以可得.答案:.技巧提升:要化简式子,需要将a、b、c三个字母统一用其中一个字母来表示或者用第四个字母来表示,这样才能合并和约分,这仍然体现了消元的思想例8方程组的解的个数为( )A1 B 2 C 3 D4分类讨论是我们常用的解题策略.分析:若0,则于是,不可能若,则 于是,解得,进而求得

    10、所以,原方程组的解为只有1个解答案:A技巧提升:本题不同于普通方程组的特点,是方程组种未知数加上了绝对值,因此要先通过分类讨论将方程(组)逐步转化为普通方程(组)来解例:讨论下列方程组解(1);(2);(3);(4)。解析:(1)(2)无解。(3)(4)有无穷多组解。技巧提升:对二元一次方程组,通过探究我们能发现:若,则方程组有唯一解;若,则方程组无解;若,则方程组有无穷多个解例9 关于,的方程组有无数组解,则,的值为( )A, B, C, D,分析:要讨论二元一次方程组的解,我们可以将它通过消元转化为讨论只含有一个未知数的方程的解的问题来解决. ,得,根据题意知这个关于y的方程有无数个解,所

    11、以可得,所以可得,.答案:.有无数组解,则要求,故,.技巧提升:对二元一次方程组,通过探究我们能发现:若,则方程组有唯一解;若,则方程组无解;若,则方程组有无穷多个解例10 求方程组3x+y=,2x-y=的解,其中x表示不大于x的最大整数分析:显而易见,本题方程组与普通方程组的不同之处在于题中多了个,因此解决本题的关键就是要理解的含义我们可以举些例子先来试试:,也就是说:,.因此可将写作的形式.解:设(),则 ,2得 ,3得 ,-得 ,又是整数,=1.5,把代入得 ,原方程组的解是技巧提升:本题解题的关键仍反映了解一次方程组的基本思想消元,也就是消去得到方程(或),这样就可以利用的整数特征和的

    12、取值范围得出和的值例:甲、乙两人共同解方程组,由于甲看错了方程中的,得到方程组的解为;乙看错了方程中的,得到方程组的解为。试计算的值.【学力训练】1选择题:(1)如果x,y满足2x+3y=15,6x+13y=41,则x+2y的值是 A5 B7 C D 9 (2)二元一次方程组的解是( )A B CD(3)若x、y是两个实数,且,则等于( ) A B. C. D. (4)设x表示不超过x最大整数,又设x、y满足方程组,如果x不是整数,那么x+y是 ( ) A一个整数 B在4与5之间 C在4与4之间 D在15与16之间 2填空题:(1)如果,则的值为 (2)如果关于的二元一次方程组的解是,那么关于

    13、的二元一次方程组的解是 (3)三个同学对问题“若方程组的解是,求方程组的解。”提出各自的想法。甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”。参考他们的讨论,你认为这个题目的解应该是 (4)已知a,b是正整数,和都是真分数,且+=1.66,则a2+b2= 3解下列二元一次方程组:(1) (2)4. 解下列三元一次方程组:(1) (2)5. 读一读:解方程组解:设,则原方程组可化为,解得,原方程组的解为试一试:请利用上述方法解方程组:(1);(2)6. 已知,求的值7.当a、b

    14、满足什么条件时,关于、的方程(2-18)x=3与方程组都无解?请说明理由.8. 已知k 是满足 的整数, 并且使二元一次方程组有整数解. 问: 这样的整数k有多少个?【答案与解析】1选择题:(1)B;(2)A;(3)C;(4)D提示:原方程组即为两式相减得,代入第二个方程得,从而,得15x+y162填空题:(1)6;(2);(3);(4)523(1);(2)4.(1);(2)5(1) ;(2)6解:解关于、的方程组得,7.解:当方程无解时,2b2-18=0,解得由得,代入得,整理得,当方程无解时,必有,所以,综上所述,a、b应满足条件:.解: 直接解原方程组得.当 (其中m和n是整数) (1)时方程组有整数解. 消去上面方程中的k, 得到. (2)从(2)解得 (其中l是整数). (3)将(3)代入(1)中一个方程, .解不等式, , .因此共有2个k值使原方程有整数解.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:[26957930]精讲练12二元一次方程组及其解法-2020-2021学年六年级数学寒假精.docx
    链接地址:https://www.ketangku.com/wenku/file-784788.html
    相关资源 更多
  • 人教版高中历史必修二第七单元 第二十一课 二战后苏联经济的改革 同步测试.docx人教版高中历史必修二第七单元 第二十一课 二战后苏联经济的改革 同步测试.docx
  • 人教版高中历史必修二第24课世界经济全球化趋势教学设计.docx人教版高中历史必修二第24课世界经济全球化趋势教学设计.docx
  • 人教版高中历史必修二第18课《罗斯福新政》优质教学设计(7页).docx人教版高中历史必修二第18课《罗斯福新政》优质教学设计(7页).docx
  • 人教版高中历史必修二模拟题精选:第八单元 世界经济的全球化趋势.docx人教版高中历史必修二模拟题精选:第八单元 世界经济的全球化趋势.docx
  • 人教版高中历史必修二 第四单元 中国特色社会主义建设的道路 单元测试.docx人教版高中历史必修二 第四单元 中国特色社会主义建设的道路 单元测试.docx
  • 人教版高中历史必修二 第二单元 资本主义世界的市场的形成和发展 单元测试.docx人教版高中历史必修二 第二单元 资本主义世界的市场的形成和发展 单元测试.docx
  • 人教版高中历史必修二 第七单元 苏联的社会主义建设 单元测试.docx人教版高中历史必修二 第七单元 苏联的社会主义建设 单元测试.docx
  • 人教版高中历史必修三试题:第四单元近代以来世界的科学发展历程.docx人教版高中历史必修三试题:第四单元近代以来世界的科学发展历程.docx
  • 人教版高中历史必修三试题:第五单元近代中国的思想解放潮流.docx人教版高中历史必修三试题:第五单元近代中国的思想解放潮流.docx
  • 人教版高中历史必修三试题:第三单元古代中国的科学技术与文学艺术.docx人教版高中历史必修三试题:第三单元古代中国的科学技术与文学艺术.docx
  • 人教版高中历史必修三试题:8.23美术的辉煌.docx人教版高中历史必修三试题:8.23美术的辉煌.docx
  • 人教版高中历史必修三试题:7.21 现代中国教育的发展.docx人教版高中历史必修三试题:7.21 现代中国教育的发展.docx
  • 人教版高中历史必修三试题:7.20“百花齐放”“百家争鸣”.docx人教版高中历史必修三试题:7.20“百花齐放”“百家争鸣”.docx
  • 人教版高中历史必修三试题:6.18 新时期的理论探索.docx人教版高中历史必修三试题:6.18 新时期的理论探索.docx
  • 人教版高中历史必修三试题:6.16三民主义的形成和发展.docx人教版高中历史必修三试题:6.16三民主义的形成和发展.docx
  • 人教版高中历史必修三试题:4.13从蒸汽机到互联网.docx人教版高中历史必修三试题:4.13从蒸汽机到互联网.docx
  • 人教版高中历史必修三试题:4.12破解生命起源之谜.docx人教版高中历史必修三试题:4.12破解生命起源之谜.docx
  • 人教版高中历史必修三试题:4.11物理学的重大进展.docx人教版高中历史必修三试题:4.11物理学的重大进展.docx
  • 人教版高中历史必修三试题:3.9辉煌灿烂的文学.docx人教版高中历史必修三试题:3.9辉煌灿烂的文学.docx
  • 人教版高中历史必修三试题:2.7启蒙运动.docx人教版高中历史必修三试题:2.7启蒙运动.docx
  • 人教版高中历史必修三试题:1.1“百家争鸣”和儒家思想的形成.docx人教版高中历史必修三试题:1.1“百家争鸣”和儒家思想的形成.docx
  • 人教版高中历史必修三第四单元 第12课 探索生命起源之谜 同步测试.docx人教版高中历史必修三第四单元 第12课 探索生命起源之谜 同步测试.docx
  • 人教版高中历史必修三第四单元 第11课 物理学的重大进展 同步测试.docx人教版高中历史必修三第四单元 第11课 物理学的重大进展 同步测试.docx
  • 人教版高中历史必修三第四单元 《近代以来世界的科学发展历程》单元测试题(解析版).docx人教版高中历史必修三第四单元 《近代以来世界的科学发展历程》单元测试题(解析版).docx
  • 人教版高中历史必修三第六单元 第18课 新时期的理论探索 同步测试.docx人教版高中历史必修三第六单元 第18课 新时期的理论探索 同步测试.docx
  • 人教版高中历史必修三第六单元 第17课 毛泽东思想 同步测试.docx人教版高中历史必修三第六单元 第17课 毛泽东思想 同步测试.docx
  • 人教版高中历史必修三第三单元测评.docx人教版高中历史必修三第三单元测评.docx
  • 人教版高中历史必修三第三单元 第10课 充满魅力的书画和戏曲艺术 同步测试.docx人教版高中历史必修三第三单元 第10课 充满魅力的书画和戏曲艺术 同步测试.docx
  • 人教版高中历史必修三第七单元 第20课 百花齐放、百家争鸣 同步测试.docx人教版高中历史必修三第七单元 第20课 百花齐放、百家争鸣 同步测试.docx
  • 相关搜索
    关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1