2021-2022高中数学人教版必修2教案:4-1-1圆的标准方程 (系列一) WORD版含答案.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021-2022高中数学人教版必修2教案:4-1-1圆的标准方程 系列一 WORD版含答案 2021 2022 高中 学人 必修 教案 标准 方程 系列 WORD 答案
- 资源描述:
-
1、第四章 圆与方程本章教材分析 上一章,学生已经学习了直线与方程,知道在直角坐标系中,直线可以用方程表示,通过方程,可以研究直线间的位置关系、直线与直线的交点坐标、点到直线的距离等问题,对数形结合的思想方法有了初步体验.本章将在上章学习了直线与方程的基础上,学习在平面直角坐标系中建立圆的代数方程,运用代数方法研究点与圆、直线与圆、圆与圆的位置关系,了解空间直角坐标系,以便为今后的坐标法研究空间的几何对象奠定基础,这些知识是进一步学习圆锥曲线方程、导数和微积分的基础,在这个过程中进一步体会数形结合的思想,形成用代数方法解决几何问题的能力. 通过方程,研究直线与圆、圆与圆的位置关系是本章的重点内容之
2、一,坐标法不仅是研究几何问题的重要方法,而且是一种广泛应用于其他领域的重要数学方法,通过坐标系把点和坐标、曲线和方程联系起来,实现了形和数的统一,因此在教学过程中,要始终贯穿坐标法这一重要思想,不怕反复.用坐标法解决几何问题时,先用坐标和方程表示相应的几何元素:点、直线、圆;然后对坐标和方程进行代数运算;最后把运算结果“翻译”成相应的几何结论.这就是坐标法解决几何问题的三步曲.坐标法还可以与平面几何中的综合方法、向量方法建立联系,同时可以推广到空间,解决立体几何问题.本章教学时间约需9课时,具体分配如下(仅供参考):4.1.1圆的标准方程1课时4.1.2圆的一般方程1课时4.2.1直线与圆的位
3、置关系2课时4.2.2圆与圆的位置关系2课时4.3.1空间直角坐标系1课时4.3.2空间两点间的距离公式1课时本章复习1课时4.1.1 圆的标准方程一、教材分析 在初中曾经学习过圆的有关知识,本节内容是在初中所学知识及前几节内容的基础上,进一步运用解析法研究圆的方程,它与其他图形的位置关系及其应用.同时,由于圆也是特殊的圆锥曲线,因此,学习了圆的方程,就为后面学习其他圆锥曲线的方程奠定了基础.也就是说,本节内容在教材体系中起到承上启下的作用,具有重要的地位,在许多实际问题中也有着广泛的应用.由于“圆的方程”一节内容的基础性和应用的广泛性,对圆的标准方程要求层次是“掌握”,为了激发学生的主体意识
4、,教学生学会学习和学会创造,同时培养学生的应用意识,本节内容可采用“引导探究”型教学模式进行教学设计,所谓“引导探究”是教师把教学内容设计为若干问题,从而引导学生进行探究的课堂教学模式,教师在教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机的结合起来.教师的每项教学措施,都是给学生创造一种思维情境,一种动脑、动手、动口并主动参与的学习机会,激发学生的求知欲,促使学生解决问题.二、教学目标1知识与技能(1)掌握圆的标准方程,能根据圆心、半径写出圆的标准方程.(2)会用待定系数法求圆的标准方程.2过程与方法进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准
5、方程解决实际问题的学习,注意培养学生观察问题发现问题和解决问题的能力.3情感态度与价值观通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣.三、教学重点与难点教学重点:圆的标准方程的推导过程和圆的标准方程特点的明确.教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程.四、课时安排1课时五、教学设计(一)导入新课思路1.课前准备:(用淀粉在一张白纸上画上海和山)说明:在白纸上要表演的是一个小魔术,名称是日出,所以还缺少一个太阳,请学生帮助在白纸上画出太阳.要求其他学生在自己的脑海里也构画出自己的太阳.课堂估计:一种是非尺规作图(指出数学作图的严谨性);一种作出后有同学
6、觉得不够美(点评:其实每个人心中都有一个自己的太阳,每个人都有自己的审美观点).然后上升到数学层次:不同的圆心和半径对应着不同的圆,进而对应着不同的圆的方程.从用圆规作图复习初中所学圆的定义:到定点的距离等于定长的点的轨迹.那么在给定圆心和半径的基础上,结合我们前面所学的直线方程的求解,应该如何建立圆的方程?教师板书本节课题:圆的标准方程.思路2.同学们,我们知道直线可以用一个方程表示,那么,圆可以用一个方程表示吗?圆的方程怎样来求呢?这就是本堂课的主要内容,教师板书本节课题:圆的标准方程.(二)推进新课、新知探究、提出问题已知两点A(2,-5),B(6,9),如何求它们之间的距离?若已知C(
7、3,-8),D(x,y),又如何求它们之间的距离?具有什么性质的点的轨迹称为圆?图1中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?图1我们知道,在平面直角坐标系中,确定一条直线的条件是两点或一点和倾斜角,那么,决定圆的条件是什么?如果已知圆心坐标为C(a,b),圆的半径为r,我们如何写出圆的方程?圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?讨论结果:根据两点之间的距离公式,得|AB|=,|CD|=.平面内与一定点距离等于定长的点的轨迹称为圆,定点是圆心,定长是半径(教师在黑板上画一个圆).圆心C是定点,圆周上的点M是动点,它们到圆心距离等于定长|M
8、C|=r,圆心和半径分别确定了圆的位置和大小.确定圆的条件是圆心和半径,只要圆心和半径确定了,那么圆的位置和大小就确定了.确定圆的基本条件是圆心和半径,设圆的圆心坐标为C(a,b),半径为r(其中a、b、r都是常数,r0).设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P=M|MA|=r,由两点间的距离公式让学生写出点M适合的条件=r.将上式两边平方得(x-a)2+(y-b)2=r2.化简可得(x-a)2+(y-b)2=r2.若点M(x,y)在圆上,由上述讨论可知,点M的坐标满足方程,反之若点M的坐标满足方程,这就说明点M与圆心C的距离为r,即点M在圆心为C的圆上.
9、方程就是圆心为C(a,b),半径长为r的圆的方程,我们把它叫做圆的标准方程.这是二元二次方程,展开后没有xy项,括号内变数x,y的系数都是1.点(a,b)、r分别表示圆心的坐标和圆的半径.当圆心在原点即C(0,0)时,方程为x2+y2=r2.提出问题根据圆的标准方程说明确定圆的方程的条件是什么?确定圆的方程的方法和步骤是什么?坐标平面内的点与圆有什么位置关系?如何判断?讨论结果:圆的标准方程(xa)2(yb)2=r2中,有三个参数a、b、r,只要求出a、b、r且r0,这时圆的方程就被确定,因此确定圆的标准方程,需三个独立条件,其中圆心是圆的定位条件,半径是圆的定形条件.确定圆的方程主要方法是待
10、定系数法,即列出关于a、b、r的方程组,求a、b、r或直接求出圆心(a,b)和半径r,一般步骤为:1根据题意,设所求的圆的标准方程(xa)2(yb)2=r2;2根据已知条件,建立关于a、b、r的方程组;3解方程组,求出a、b、r的值,并把它们代入所设的方程中去,就得到所求圆的方程.点M(x0,y0)与圆(x-a)2+(y-b)2=r2的关系的判断方法:当点M(x0,y0)在圆(x-a)2+(y-b)2=r2上时,点M的坐标满足方程(x-a)2+(y-b)2=r2.当点M(x0,y0)不在圆(x-a)2+(y-b)2=r2上时,点M的坐标不满足方程(x-a)2+(y-b)2=r2.用点到圆心的距
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-461979.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
