2021-2022高中数学人教版必修5教案:1-1-1正弦定理 (系列二) WORD版含答案.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021-2022高中数学人教版必修5教案:1-1-1正弦定理 系列二 WORD版含答案 2021 2022 高中 学人 必修 教案 正弦 定理 系列 WORD 答案
- 资源描述:
-
1、1.1.1正弦定理教学目标:1让学生从已有的几何知识出发, 通过对任意三角形边角关系的探索,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,实验,猜想,验证,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的内容及其证明方法,理解三角形面积公式,并学会运用正弦定理解决解斜三角形的两类基本问题。2通过对实际问题的探索,培养学生观察问题、提出问题、分析问题、解决问题的能力,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。3通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣。4培
2、养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。五、教学重点与难点教学重点:正弦定理的发现与证明;正弦定理的简单应用。教学难点:正弦定理的猜想提出过程。教学准备:制作多媒体课件,学生准备计算器,直尺,量角器。六、教学过程:(一)结合实例,激发动机师生活动:师:每天我们都在科技楼里学习 ,对科技楼熟悉吗?生:当然熟悉。师:那大家知道科技楼有多高吗?学生不知道。激起学生兴趣!师:给大家一个皮尺和测角仪,你能测出楼的高度吗? 学生思考片刻,教师引导。 生1:在楼的旁边取一个观测点C,再用一个标杆,利用三角形相
3、似。师:方法可行吗?生2:B点位置在楼内不确定,故BC长度无法测量,一次测量不行。师:你有什么想法?生2:可以再取一个观测点D.师:多次测量取得数据,为了能与上次数据联系,我们应把D点取在什么位置?生2:向前或向后 师:好,模型如图(2):我们设,,CD=10m,那么我们能计算出AB吗?生3:由求出AB。师:很好,我们可否换个角度,在中,能求出AD,也就求出了AB。在中,已知两角,也就相当于知道了三个角,和其中一个角的对边,要求出AD,就需要我们来研究三角形中的边角关系。师:探究一般三角形中的边角关系,我们应从我们最熟悉的特殊三角形入手!生4:直角三角形。师:直角三角形的边与角之间存在怎样的关
4、系?BaACcb(图4)生5:思考交流得出,如图4,在RtABC中,设BC=a,AC=b,AB=c,则有,又,则从而在直角三角形ABC中,(三)证明猜想,得出定理师生活动:教师:那么,在斜三角形中也成立吗?用几何画板演示,用多媒体的手段对结论加以验证!但特殊不能代替一般,具体不能代替抽象,这个结果还需要严格的证明才能成立,如何证明哪?前面探索过程对我们有没有启发?学生分组讨论,每组派一个代表总结。(以下证明过程,根据学生回答情况进行叙述)学生6:思考得出在中,成立,如前面检验。在锐角三角形中,如图5设,作:,垂足为在中,(图5)在中,同理,在中, 在钝角三角形中,如图6设为钝角,作交的延长线于
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-462103.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
