山东省烟台市2022-2023学年高一上学期期中学业水平诊断数学试卷 含答案.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省烟台市2022-2023学年高一上学期期中学业水平诊断数学试卷 含答案 山东省 烟台市 2022 2023 学年 高一上 学期 期中 学业 水平 诊断 数学试卷 答案
- 资源描述:
-
1、2022-2023学年度第一学期期中学业水平诊断高一数学第卷(共60分)一、选择题(本题共8个小题,每小题5分,共40分在每小题给出的四个选项中,只有一项是符合要求的)1. 已知集合,则( )A. B. C. D. 2. 已知x,则“x和y均为有理数”是“xy为有理数”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 下列各组函数中,表示同一函数的是( )A. ,B. ,C ,D. ,4. 下列命题中,正确的是( )A. 若,则.B. 若,则.C. 若,则.D. 若,则.5. 已知函数,若,则是( )A. 奇函数,在和单调递增B. 奇函数,在和单调递
2、减C. 偶函数,在单调递增,在单调递减D. 偶函数,在单调递减,在单调递增6. 已知函数,若,则( )A -4B. -1C. -4或-1D. -4或7. 定义在R上的函数满足:,则不等式的解集是( )A. 或B. 或C. 或D. 或8. 已知,且,若不等式恒成立,则实数m的取值范围为( )A. B. C 或D. 或二、选择题(本题共4小题,每小题5分,共20分在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分)9. 满足集合,且,则集合( )A. B. C. D. 10. 已知函数,设函数则( )A. 是偶函数B. 方程有四个实数根C. 在区间上单调递
3、增D. 有最大值,没有最小值11 已知,且,则( )A. B. C. D. 12. 已知函数的定义域为R,对任意的实数x,y,有,且当时,则( )A. B. 对任意的,恒成立C. 函数在上单调递增D. 若,则不等式的解集为第卷(共90分)三、填空题(本题共4小题,每小题5分,共20分)13. 已知集合,则B中元素的个数为_14. 若命题“”是假命题,则实数的取值范围是_15. 已知,且,则的最小值为_16. 高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,函数称为高斯函数,其中,表示不超过x的最大整数,例如:,若函数,则的值域为_;若函数,则方程所有的解为_四、解答题(本题
4、共6小题,共70分解答应写出文字说明、证明过程或演算步骤)17. 已知函数的定义域为集合A,集合(1)求集合A;(2)请在下面这两个条件中任选一个,补充在横线处,并给出问题的解答充分条件,必要条件是否存在实数m,使得是的_?若存在,求出m的取值范围;若不存在,请说明理由注:如果选择多个条件分别解答,按第一个解答计分18. 已知是定义在R上的偶函数,当时,(1)求解析式;(2)求不等式的解集19. 已知函数,二次函数满足,且不等式的解集为(1)求,的解析式;(2)设,根据定义证明:在上为增函数20. 已知某企业原有职工500人,每人每年可为企业创利6.5万元为应对新冠疫情给企业带来的不利影响,该
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-500808.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
