分享
分享赚钱 收藏 举报 版权申诉 / 12

类型专题9—导数大题1-近8年高考真题分类汇编—2022届高三数学一轮复习.doc

  • 上传人:a****
  • 文档编号:514881
  • 上传时间:2025-12-09
  • 格式:DOC
  • 页数:12
  • 大小:1.76MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题 导数 年高 考真题 分类 汇编 2022 届高三 数学 一轮 复习
    资源描述:

    1、专题9导数大题1考试说明:1、了解函数的单调性和导数的关系;能利用导数研究函数的单调性,回求函数的单调区间;2、 了解函数在某点取得极值时的充要条件,会用导数求函数的极值,会求闭区间上函数的最大值和最小值。3、 了解导数的综合应用题型特点:导数的综合应用是历年高考的热点,试题难度通常较大,多以压轴题的形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根;利用导数研究恒成立问题等等,体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用。一、 典例分析命题角度1利用导数研究函数的单调性问题例1(2021乙卷)已知函数(1)讨论的单调性

    2、;(2)求曲线过坐标原点的切线与曲线的公共点的坐标命题角度2利用导数研究函数的极值、最值问题例2(2019全国)已知函数(1)当时,求的单调区间;(2)若在区间,的最小值为,求命题角度3利用导数研究函数的方程的根(或函数的零点)例3(2020浙江)已知,函数,其中为自然对数的底数()证明:函数在上有唯一零点;()记为函数在上的零点,证明:();()二、 真题集训1(2020新课标)已知函数(1)若,求的取值范围;(2)设,讨论函数的单调性2(2019江苏)设函数,为的导函数(1)若,(4),求的值;(2)若,且和的零点均在集合,1,中,求的极小值;(3)若,且的极大值为,求证:3(2021浙江

    3、)设,为实数,且,函数()求函数的单调区间;()若对任意,函数有两个不同的零点,求的取值范围;()当时,证明:对任意,函数有两个不同的零点,满足(注是自然对数的底数)典例分析答案命题角度1利用导数研究函数的单调性问题例1(2021乙卷)已知函数(1)讨论的单调性;(2)求曲线过坐标原点的切线与曲线的公共点的坐标分析:(1)对函数求导,分及讨论导函数与零的关系,进而得出的单调性情况;(2)先设出切点,表示出切线方程,根据切线过原点,可求得切线方程,将切线方程与曲线联立,即可求得公共点坐标解答:解:(1),当,即时,由于的图象是开口向上的抛物线,故此时,则在上单调递增;当,即时,令,解得,令,解得

    4、或,令,解得,在,单调递增,在,单调递减;综上,当时,在上单调递增;当时,在单调递增,在单调递减(2)设曲线过坐标原点的切线为,切点为,则切线方程为,将原点代入切线方程有,解得,切线方程为,令,即,解得或,曲线过坐标原点的切线与曲线的公共点的坐标为和点评:本题考查导数的几何意义以及利用导数研究函数的单调性,考查分类讨论思想及运算求解能力,属于中档题命题角度2利用导数研究函数的极值、最值问题例2(2019全国)已知函数(1)当时,求的单调区间;(2)若在区间,的最小值为,求分析:(1)将代入中,然后求导,根据导函数的零点判断单调性导函数在各区间上的符合,从而得到单调区间;(2)对求导后,根据导函

    5、数的零点分,三类分别求出的最小值,让最小值等于,解出,然后判断是否符合条件即可解答:解:(1)当时,则,令,则,当时,;当时,的单调递减区间为,单调递增区间为;(2),令,则,当时,在,上单调递增,不符合条件;当时,则当时,;当时,在上单调递减,在上单调递增,符合条件;当时,则当时,在上单调递减,不符合条件在区间,的最小值为,的值为点评:本题考查了利用导数研究函数的单调性和最值,考查了分类讨论思想和分类法,属中档题命题角度3利用导数研究函数的方程的根(或函数的零点)例3(2020浙江)已知,函数,其中为自然对数的底数()证明:函数在上有唯一零点;()记为函数在上的零点,证明:();()分析:(

    6、)推导出时,恒成立,(2),由此能证明函数在上有唯一零点(),从而,进而,令,利用导数性质能证明要证明,只需证明,只需证,由此能证明解答:证明:(),恒成立,在上单调递增,(2),又,函数在上有唯一零点(),令,一方面,在单调递增,另一方面,当时,成立,只需证明当时,当时,当时,(1),(1),在单调递减,综上,要证明,只需证,由得只需证,只需证,只需证,即证,点评:本题考查函数有唯一零点、不等式的证明,导数性质、函数的单调性、最值等基础知识,考查转化思想和运算求解能力,是中档题真题集训答案1(2020新课标)已知函数(1)若,求的取值范围;(2)设,讨论函数的单调性解:(1)等价于设,当时,

    7、单调递增,当时,单调递减,在时取得极大值也就是最大值为(1),即则的取值范围为,;(2),令,则,令,解得,令,解得,在上单调递增,在上单调递减(a),即,在和上单调递减2(2019江苏)设函数,为的导函数(1)若,(4),求的值;(2)若,且和的零点均在集合,1,中,求的极小值;(3)若,且的极大值为,求证:解:(1),(4),解得(2),设令,解得,或令,解得,或和的零点均在集合,1,中,若:,则,舍去,则,舍去,则,舍去,则,舍去,则,舍去,则,因此,可得:可得时,函数取得极小值,(1)(3)证明:,令解得:,可得时,取得极大值为,令,可得:,令,函数在上单调递减,函数在上单调递增,3(

    8、2021浙江)设,为实数,且,函数()求函数的单调区间;()若对任意,函数有两个不同的零点,求的取值范围;()当时,证明:对任意,函数有两个不同的零点,满足(注是自然对数的底数)解:(),当时,由于,则,故,此时在上单调递增;当时,令,解得,令,解得,此时在单调递减,在单调递增;综上,当时,的单调递增区间为;当时,的单调递减区间为,单调递增区间为;()由()知,要使函数有两个不同的零点,只需即可,对任意均成立,令,则,即,即,即,对任意均成立,记,则,令(b),得,当,即时,易知(b)在,单调递增,在单调递减,此时(b),不合题意;当,即时,易知(b)在,单调递减,此时,故只需,即,则,即;综上,实数的取值范围为,;()证明:当时,令,解得,易知,有两个零点,不妨设为,且,由,可得,要证,即证,即证,而,则,要证,即证,即证,而,即得证

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题9—导数大题1-近8年高考真题分类汇编—2022届高三数学一轮复习.doc
    链接地址:https://www.ketangku.com/wenku/file-514881.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1