分享
分享赚钱 收藏 举报 版权申诉 / 4

类型数学:第3章《抽象函数的性质问题》素材(沪教版高中一年级 第一学期).doc

  • 上传人:a****
  • 文档编号:541062
  • 上传时间:2025-12-10
  • 格式:DOC
  • 页数:4
  • 大小:368.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    抽象函数的性质问题
    资源描述:

    1、抽象函数的性质问题解析抽象函数是高中数学的一个难点,也是近几年来高考的热点。考查方法往往基于一般函数,综合考查函数的各种性质。本节给出抽象函数中的函数性质的处理策略,供内同学们参考。1、 定义域:解决抽象函数的定义域问题明确定义、等价转换。材料一:若函数的定义域为,求函数的定义域。解析:由的定义域为,知中的,从而,对函数而言,有,解之得:。所以函数的定义域为总结:函数的定义域是指自变量的取值范围,求抽象函数的定义域的关键是括号内式子的地位等同(即同一对应法则后括号内的式子具有相同的取值范围),如本题中的与的范围等同。2、 值域:解决抽象函数的值域问题定义域、对应法则决定。材料二:若函数的值域为

    2、,求函数的值域。解析:函数中定义域与对应法则与函数的定义域与对应法则完全相同,故函数的值域也为。总结:当函数的定义域与对应法则不变时,函数的值域也不会改变。3、 对称性:解决抽象函数的对称问题定义证明是根本、图象变换是捷径、特值代入是妙法。材料三:设函数定义在实数集上,则函数与的图象关于( )A、直线对称 B直线对称 C直线对称 D直线对称解法一(定义证明):设点是函数的图象上的任意一点,则,关于直线的对称点为,要使点在函数的图象上,则,应有,故,所以函数与的图象关于直线对称。解法二(图象变换法):由函数的图象向右平移1个单位得到函数的图象;由函数的图象关于轴对称得到函数的图象,再向右平移1个

    3、单位,得到的图象。如图所示,选D。解法三(特值代入法):由已知可得点在函数的图象上,点在函数的图象上,又点P、Q关于直线对称,选D。总结:了解一些简单结论对解题也是很有好处的。如:函数满足,则函数的自对称轴为;函数与的互对称轴为,即4、 周期性:解决抽象函数的周期性问题充分理解与运用相关的抽象式是关键。材料四:设是定义在R上的奇函数,其图象关于直线对称。证明是周期函数。证明:由的图象关于直线对称,得,又是定义在R上的奇函数,所以,则由周期函数的定义可知4是它的一个周期。总结:一般地,,均可断定函数的周期为2T。5、 奇偶性:解决抽象函数的奇偶性问题紧扣定义、合理赋值。材料五:已知是定义在R上的

    4、不恒为零的函数,且对于任意的,都满足:。判断的奇偶性,并证明你的结论。解析:令,则,得; 令,则,得;令,得,得因此函数为奇函数。总结:赋值是解决多变量抽象函数的重要手段。6、 单调性:解决抽象函数的单调性问题紧密结合定义、适当加以配凑。材料六:设是定义在-1,1上的奇函数,且对于任意的,当时,都有:。若,试比较与的大小。解析:,又,即。总结:本题实质上是证明函数的单调性,有时也用到(或)来判断。抽象函数的单调性,一般不用导数判断。7、 可解性:由抽象式求解析式问题视为未知数,构造方程(组)。材料七:设函数满足,求。解析:以代,得,以代,得,+-得:所以 总结:在所给的抽象式中紧紧围绕,将其余

    5、的式子替换成,构造一个或几个方程,然后设法求解。8、 凹凸性:解决函数的凹凸性问题捕捉图象信息,数形结合。材料八:如图所示,是定义在0,1上的四个函数,其中满足性质:“对0,1中任意的和,任意,恒成立”的只有( )A、 B、 C、 D、解析:令,则不等式变为,可知函数是一个凹函数,故只有正确,选A。总结:函数的凹凸性在高中阶段没有专门研究,但也逐渐走入高考殿堂。总之,因为抽象函数密切联系函数的单调性、奇偶性、周期性、对称性等诸多性质,加上本身的抽象性、多变性,使得抽象函数这一难点更加扑朔迷离。因此应不断挖掘隐含,灵活运用上述解题策略,定会收到良好的效果。课外练习:函数是定义域在0,1上的增函数,满足且,在每个区间上,的图象都是斜率为同一常数k的直线的一部分。(1)、求、及的值,并归纳出的表达式;(2)、直线,轴及的图象围成的图形的面积为,记,求的表达式,并写出其定义域和最小值。(04,北京,18)解析:(1)为了求,只需在条件中,令,即有。由及,得。同理。归纳。(2)、时, 。故是首项为,公比为的等比数列,所以。的定义域是,当时取得最小值。高考资源网()来源:高考资源网版权所有:高考资源网(www.k s 5 )

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:数学:第3章《抽象函数的性质问题》素材(沪教版高中一年级 第一学期).doc
    链接地址:https://www.ketangku.com/wenku/file-541062.html
    相关资源 更多
  • 浙江省2012届高三高考模拟仿真冲刺(二)数学理试卷 PDF版含答案.pdf浙江省2012届高三高考模拟仿真冲刺(二)数学理试卷 PDF版含答案.pdf
  • 小学数学思维培养掌中宝·2级.pdf小学数学思维培养掌中宝·2级.pdf
  • 海沧区2023-2024学年第一学期八年级数学试题.pdf海沧区2023-2024学年第一学期八年级数学试题.pdf
  • 湖南长沙市芙蓉区2022年下学期二年级期末质量检测卷数学试卷.pdf湖南长沙市芙蓉区2022年下学期二年级期末质量检测卷数学试卷.pdf
  • 湖南长沙市芙蓉区2022年下学期一年级期末质量检测卷数学试卷.pdf湖南长沙市芙蓉区2022年下学期一年级期末质量检测卷数学试卷.pdf
  • 湖南长沙市芙蓉区2018年下学期四年级期末质量检测数学试卷【无答案】.pdf湖南长沙市芙蓉区2018年下学期四年级期末质量检测数学试卷【无答案】.pdf
  • 湖南长沙市芙蓉区2018年下学期三年级期末质量检测数学试卷【无答案】.pdf湖南长沙市芙蓉区2018年下学期三年级期末质量检测数学试卷【无答案】.pdf
  • 湖南长沙五年级数学联考试卷.pdf湖南长沙五年级数学联考试卷.pdf
  • 湖南长沙五年级下册数学联考试卷及答案.pdf湖南长沙五年级下册数学联考试卷及答案.pdf
  • 湖南省长郡中学2024届高三数学上学期月考(二)(PDF版附解析).pdf湖南省长郡中学2024届高三数学上学期月考(二)(PDF版附解析).pdf
  • 小学数学1-5年级练习册(合订本).pdf小学数学1-5年级练习册(合订本).pdf
  • 小学数学1-5年级上下10本练习册(合订本).pdf小学数学1-5年级上下10本练习册(合订本).pdf
  • 湖南省长沙市长郡中学2023-2024学年高三上学期月考(五)数学试卷.pdf湖南省长沙市长郡中学2023-2024学年高三上学期月考(五)数学试卷.pdf
  • 湖南省长沙市中学2023-2024学年高一上学期入学考试数学试卷.pdf湖南省长沙市中学2023-2024学年高一上学期入学考试数学试卷.pdf
  • 湖南省长沙市中学2022-2023学年高二下学期数学竞赛试题(解析版).pdf湖南省长沙市中学2022-2023学年高二下学期数学竞赛试题(解析版).pdf
  • 湖南省长沙市中学2022-2023学年高二下学期数学竞赛试题(原卷版).pdf湖南省长沙市中学2022-2023学年高二下学期数学竞赛试题(原卷版).pdf
  • 海南省2020年中考数学试题【附答案】.pdf海南省2020年中考数学试题【附答案】.pdf
  • 海南省2019年中考数学试题【附答案】.pdf海南省2019年中考数学试题【附答案】.pdf
  • 海南省2018年中考数学试卷【附答案】.pdf海南省2018年中考数学试卷【附答案】.pdf
  • 湖南省邵阳市中学2022-2023学年高一下学期期末考试数学试题.pdf湖南省邵阳市中学2022-2023学年高一下学期期末考试数学试题.pdf
  • 河北省部分学校2022-2023学年高三数学上学期11月联考试卷(PDF版附解析).pdf河北省部分学校2022-2023学年高三数学上学期11月联考试卷(PDF版附解析).pdf
  • 小学四年级2021秋一遍过-数学-RJ-4上(全)(答案回填)-31719.pdf小学四年级2021秋一遍过-数学-RJ-4上(全)(答案回填)-31719.pdf
  • 河北省邯郸市七年级下学期期中数学试题【附答案】.pdf河北省邯郸市七年级下学期期中数学试题【附答案】.pdf
  • 河北省邯郸市2022届高三上学期开学摸底考试数学试题全解全析.pdf河北省邯郸市2022届高三上学期开学摸底考试数学试题全解全析.pdf
  • 河北省邢台市襄都区等五地2022-2023学年高二数学上学期12月联考试卷(PDF版附答案).pdf河北省邢台市襄都区等五地2022-2023学年高二数学上学期12月联考试卷(PDF版附答案).pdf
  • 河北省邢台市四校质检联盟2023-2024学年高三数学上学期期中考试试题(PDF版附答案).pdf河北省邢台市四校质检联盟2023-2024学年高三数学上学期期中考试试题(PDF版附答案).pdf
  • 河北省邢台市六校联考2022-2023学年高二数学上学期期中考试试卷(PDF版有答案).pdf河北省邢台市六校联考2022-2023学年高二数学上学期期中考试试卷(PDF版有答案).pdf
  • 河北省邢台2023-2024高三数学上学期第四次联合月考试题(pdf).pdf河北省邢台2023-2024高三数学上学期第四次联合月考试题(pdf).pdf
  • 河北省衡水中学2022届高三数学上学期第一次调研(8月)试题(PDF版附答案).pdf河北省衡水中学2022届高三数学上学期第一次调研(8月)试题(PDF版附答案).pdf
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1