广东省惠州市2021届高三第一次调研考试数学试题 WORD版含答案.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广东省惠州市2021届高三第一次调研考试数学试题 WORD版含答案 广东省 惠州市 2021 届高三 第一次 调研 考试 数学试题 WORD 答案
- 资源描述:
-
1、惠州市2021届高三第一次调研考试试题数 学全卷满分150分,时间120分钟 2020.07注意事项:1答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。2作答单项及多项选择题时,选出每个小题答案后,用2B铅笔把答题卡上对应题目的答案信息点涂黑。如需改动,用橡皮擦干净后,再选涂其它答案,写在本试卷上无效。3非选择题必须用黑色字迹签字笔作答,答案必须写在答题卡各题指定的位置上,写在本试卷上无效。一、单项选择题:本题共10小题,每小题满分5分,共50分。在每小题给出的四个选项中,只有一项符合题目要求,选对得5分,选错得0分。1设集合,集合, 则( ).A B C
2、D2复数满足,其中为虚数单位,则复数=( ).A B C D 3已知,则( ).A B C D4已知向量,向量,若,则实数( ).A B C D5已知正方体的棱长为1,则直线与直线所成角的余弦值为( ).A B C D6已知双曲线的一条渐近线平行于直线,则双曲线的离心率为( ).A B C D7张丘建算经是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间。其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同。已知第一日织布5尺,30日共织布390尺,则该女子织布每日增加( )尺.A B C D8函数的部分图象的大致形状是( ).A B C D
3、9根据中央关于精准脱贫的要求,某市某农业经济部门随机派遣甲、乙等共4位专家对3个县区进行调研,每个县区至少派1位专家,则甲、乙两位专家派遣至同一县区的概率为( ).A B C D10对于函数,若在定义域内存在实数x,满足,称为“局部奇函数”.若为定义域R上的“局部奇函数”,则实数m的取值范围是( ). A BC D二、多项选择题:本题共2小题,每小题满分5分,共10分。在每小题给出的四个选项中,有多项符合题目要求。全部选对得5分,部分选对得3分,有选错的得0分。11下列选项中正确的是()A不等式恒成立 B存在实数a,使得不等式成立C若为正实数,则 D若正实数x,y满足,则12在空间中,已知是两
4、条不同的直线,是两个不同的平面,则下列选项中正确的是( )A若,且,则 B若,且,则C若与相交,且,则与相交 D若,且,则三、填空题:本题共4小题,每小题5分,共20分,其中16题第一个空3分,第二个空2分。13函数在点的切线方程为_14二项式的展开式中的系数是_15若抛物线上的点M到焦点的距离为10,则M点到y轴的距离是_16已知ABC,ABAC4,BC2,点D为AB延长线上一点,BD2,连接CD,则BDC的面积是_,cosBDC_四、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(本小题满分10分) 已知等差数列的公差,若,且,成等比数列(1)求数列的通项公式;(2)设,求
5、数列的前项和18(本小题满分12分)在中,角的对边分别为,且.(1)求角的值;(2)若,的面积为,求的周长19(本小题满分12分)CEDBAF如图,是边长为3的正方形,平面,与平面所成角为(1)求证:平面;(2)求二面角的余弦值;20(本小题满分12分)已知椭圆()的一个焦点为,且该椭圆经过点.(1)求椭圆的方程;(2)过点作直线与椭圆交于不同的两点、,试问在轴上是否存在定点 使得直线与直线恰关于轴对称?若存在,求出点的坐标;若不存在,说明理由.21(本小题满分12分)已知6名某疾病病毒密切接触者中有1名感染病毒,其余5名健康,需要通过化验血液来确定感染者。血液化验结果呈阳性的即为感染者,呈阴
6、性即为健康(1)若从这6名密切接触者中随机抽取3名,求抽到感染者的概率;(2)血液化验确定感染者的方法有:逐一化验;平均分组混合化验:先将血液样本平均分成若干组,对组内血液混合化验,若化验结果呈阴性,则该组血液不含病毒;若化验结果呈阳性,则对该组的备份血液逐一化验,直至确定感染者。(i)采取逐一化验,求所需化验次数的分布列及数学期望;(ii)采取平均分组混合化验(每组血液份数相同),求不同分组方法所需化验次数的数学期望。你认为选择哪种化验方案更合理?请说明理由。22(本小题满分12分)已知函数.(1)若,求的极值;(2)若,求正实数的取值范围.惠州市2021届高三第一次调研考试数学参考答案与评
7、分细则一、单项选择题:本题共10小题,每小题满分5分,共50分。题号12345678910答案ACABCDBDAB1.【解析】由题意可得,所以,故选A2.【解析】,故选C3.【解析】,故选A4.【解析】由已知得,故选B5.【解析】连接,则,可知是正三角形,故选C6.【解析】 由题知双曲线的一条渐近线方程为,则, ,故选D7.【解析】由题意可知该女子每日织布数呈等差数列,设为,首项,可得,解之得,故选B8.【解析】由,所以为奇函数,排除A,C;因为 的大于0的零点中,最小值为;又因为,故选D9.【解析】先从4个专家中选2个出来,看成1个专家有种选法,再将捆绑后的专家分别派到3 个县区,共有种分法
8、,故总共有种派法。 其中甲、乙两位专家派遣至同一县区有种,其概率为. 故选A10.【解析】 由“局部奇函数”可得: ,整理可得:,考虑到,从而可将视为整体,方程转化为:,利用换元设(),则问题转化为只需让方程存在大于等于2的解即可,故分一个解和两个解来进行分类讨论。设(1)若方程有一个解,则有相切(切点大于等于2)或相交(其中交点在两侧),即或,解得:或(2)若方程有两解,则,解得:,综上所述:,答案B二、多项选择题:本题共2小题,每小题满分5分,共10分。在每小题给出的四个选项中,有多项符合题目要求。全部选对得5分,部分选对得3分,有选错的得0分。11题选项12题选项可得分数全部正确BCDA
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
