分享
分享赚钱 收藏 举报 版权申诉 / 10

类型2020-2021学年高二数学上学期寒假作业6 导数及其应用(文含解析)新人教A版.docx

  • 上传人:a****
  • 文档编号:583463
  • 上传时间:2025-12-11
  • 格式:DOCX
  • 页数:10
  • 大小:582.71KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2020-2021学年高二数学上学期寒假作业6 导数及其应用文含解析新人教A版 2020 2021 学年 数学 上学 寒假 作业 导数 及其 应用 解析 新人
    资源描述:

    1、作业6导数及其应用1曲线的一条切线的斜率为,则该切线的方程为_【答案】【解析】设切线的切点坐标为,所以切点坐标为,所求的切线方程为,即,故答案为2设函数若,则_【答案】1【解析】由函数的解析式可得,则,据此可得,整理可得,解得,故答案为一、选择题1下列求导运算错误的是( )ABCD2设曲线在点处的切线方程为,则( )A0B1CD23已知函数,其导函数为,则的值为( )A1B2C3D44函数的定义域为,对任意,则的解集为( )ABCD5已知函数,若曲线在点处的切线方程为,则( )A0B1C2D36函数的大致图像是( )ABCD7已知函数是定义域为R的奇函数,且当时,函数,若关于x的函数恰有2个零

    2、点,则实数a的取值范围为( )ABCD8已知定义在上的函数满足且,其中是函数的导函数,e是自然对数的底数,则不等式的解集为( )ABCD二、填空题9已知曲线的一条切线的斜率为,则该切线的方程为_10设函数的导数为,且,则_11已知,对任意的都有,则的取值范围为_12已知函数在区间(其中)上存在最大值,则实数的取值范围是_三、解答题13设函数(1)求的值;(2)求的单调区间和极值;(3)若关于的方程有3个不同实根,求实数的取值范围14已知函数(1)当时,求曲线在点处的切线方程;(2)求的单调区间;(3)若函数没有零点,求的取值范围一、选择题1【答案】D【解析】,A正确;,B正确;,C正确;,所以

    3、D不正确,故选D2【答案】D【解析】由题得,则切线的斜率为又,曲线在点处的切线方程为,即又切线方程为,所以比较系数得,解得,所以,故选D3【答案】C【解析】,所以为偶函数,所以,因为,所以,所以,故选C4【答案】D【解析】令,所以,故在上单调递增,又,所以当时,即,所以的解集为,故选D5【答案】B【解析】,过点,故选B6【答案】B【解析】可得的定义域为关于原点对称,且,为奇函数,图象关于原点对称,故A、C错误;当时,故当时,单调递增;当时,单调递减,故D错误,B正确,故选B7【答案】C【解析】,或,时,时,递减;时,递增,的极小值为,又,因此无解此时要有两解,则,又是奇函数,时,仍然无解,要有

    4、两解,则,综上有,故选C8【答案】A【解析】令,则,因为,所以,所以在上为单调递减函数,当时,由,可知,不满足;当时,所以可化为,即,因为在上为单调递减函数,所以,所以不等式的解集为,故选A二、填空题9【答案】【解析】设切点为,解得(舍去)或,故切线方程为,即,故答案为10【答案】【解析】因为,所以,所以,则,所以,则,则,故答案为411【答案】【解析】由,得或,在区间上,单调递增;在内时,单调递减又,又对于任意的恒成立,即a的取值范围是,故答案为12【答案】【解析】因为,所以当时,;当时,所以在区间上单调递增,在区间上单调递减,所以函数在处取得极大值因为函数在区间(其中)上存在最大值,所以,

    5、解得,故答案为三、解答题13【答案】(1)6;(2)单调递增区间是,单调递减区间是;极大值,极小值;(3)【解析】(1)因为,故(2),令,得,当或时,;当时,函数的单调递增区间是,单调递减区间是当,极大值为,当,极小值为(3)令,则,由(2)可得的极大值为,极小值为,因为有三个不同的根,故,解得当时直线与的图象有3个不同交点14【答案】(1);(2)见解析;(3)【解析】(1)当时,所以切线方程为(2),当时,当时,所以的单调增区间是;当时,函数与在定义域上的情况如下:0+极小值所以的单调增区间是,单调减区间为(3)由(2)可知当时,是函数的单调增区间,且有,所以,此时函数有零点,不符合题意;当时,函数在定义域上没零点;当时,是函数的极小值,也是函数的最小值,所以,当,即时,函数没有零点,综上所述,当时,没有零点

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2020-2021学年高二数学上学期寒假作业6 导数及其应用(文含解析)新人教A版.docx
    链接地址:https://www.ketangku.com/wenku/file-583463.html
    相关资源 更多
  • 专题05 动词和非谓语动词专项讲练-2023中考英语二轮复习讲练测(广东专用).docx专题05 动词和非谓语动词专项讲练-2023中考英语二轮复习讲练测(广东专用).docx
  • 专题05 动词和非谓语动词专项测试-2023中考英语二轮复习讲练测(广东专用).docx专题05 动词和非谓语动词专项测试-2023中考英语二轮复习讲练测(广东专用).docx
  • 专题05 动点折叠类问题中函数及其综合题型(学生版)学霸冲冲冲shop348121278.taobao.com.docx专题05 动点折叠类问题中函数及其综合题型(学生版)学霸冲冲冲shop348121278.taobao.com.docx
  • 专题05 功和功率【考题猜想】(解析版).docx专题05 功和功率【考题猜想】(解析版).docx
  • 专题05 功和功率【考题猜想】(原卷版).docx专题05 功和功率【考题猜想】(原卷版).docx
  • 专题05 功和功率【考点清单】(解析版).docx专题05 功和功率【考点清单】(解析版).docx
  • 专题05 功和功率【考点清单】(原卷版).docx专题05 功和功率【考点清单】(原卷版).docx
  • 专题05 分类打靶函数应用与函数模型(练习)(解析版).docx专题05 分类打靶函数应用与函数模型(练习)(解析版).docx
  • 专题05 分类打靶函数应用与函数模型(练习)(原卷版).docx专题05 分类打靶函数应用与函数模型(练习)(原卷版).docx
  • 专题05 分类打靶函数应用与函数模型(6大核心考点)(讲义)(解析版).docx专题05 分类打靶函数应用与函数模型(6大核心考点)(讲义)(解析版).docx
  • 专题05 分类打靶函数应用与函数模型(6大核心考点)(讲义)(原卷版).docx专题05 分类打靶函数应用与函数模型(6大核心考点)(讲义)(原卷版).docx
  • 专题05 分段函数研究(教师版).docx专题05 分段函数研究(教师版).docx
  • 专题05 分段函数研究(学生版).docx专题05 分段函数研究(学生版).docx
  • 专题05 分式篇(解析版).docx专题05 分式篇(解析版).docx
  • 专题05 分式篇(原卷版).docx专题05 分式篇(原卷版).docx
  • 专题05 分式方程(解析版).docx专题05 分式方程(解析版).docx
  • 专题05 分式方程(原卷版).docx专题05 分式方程(原卷版).docx
  • 专题05 函数的概念-【中职专用】中职高考数学二轮复习专项突破.docx专题05 函数的概念-【中职专用】中职高考数学二轮复习专项突破.docx
  • 专题05 函数的最大(小)值(含解析)-2021-2022学年高一数学重难点手册(函数的概念与性质篇人教A版2019必修第一册).docx专题05 函数的最大(小)值(含解析)-2021-2022学年高一数学重难点手册(函数的概念与性质篇人教A版2019必修第一册).docx
  • 专题05 函数 5.9函数零点 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.9函数零点 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.8函数图像 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.8函数图像 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题05 函数 5.8函数图像 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.8函数图像 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.7对称性与周期性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.7对称性与周期性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.5单调性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.5单调性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题05 函数 5.5单调性 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.5单调性 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.4对数函数 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.4对数函数 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.3指数函数 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.3指数函数 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1