2020版高考数学北京版大一轮精准复习精练:9-2 直线、圆的位置关系 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020版高考数学北京版大一轮精准复习精练:9-2直线、圆的位置关系 WORD版含解析 2020 高考 数学 北京 一轮 精准 复习 精练 直线 位置 关系 WORD 解析
- 资源描述:
-
1、9.2直线、圆的位置关系挖命题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点直线、圆的位置关系1.能根据给定直线、圆的方程判断直线与圆的位置关系2.能用直线与圆的位置关系解决弦长问题3.会求圆的切线方程及与圆有关的最值问题4.能根据给定两圆的方程判断两圆的位置关系5.会求两圆相交弦所在直线的方程及弦长6.初步了解用代数方法处理几何问题的思想2014北京,19直线与圆的位置关系的判断椭圆的方程和几何性质2014北京文,7圆的有关性质向量的数量积运算2012北京文,9弦长问题勾股定理分析解读从高考试题来看,直线与圆以及圆与圆的位置关系一直是高考考查的重点和热点问题,题型以选择题和填空
2、题为主.分值大约为5分.主要考查:1.方程中含有参数的直线与圆的位置关系的判定;2.利用相切或相交的条件求参数的值或取值范围;3.利用相切或相交的条件求圆的切线长或弦长;4.由两圆的位置关系判定两圆的公切线条数.同时考查学生的逻辑思维能力和运算求解能力,考查化归与转化思想、分类讨论思想、方程思想以及数形结合思想的应用.破考点【考点集训】考点直线、圆的位置关系1.(2015重庆,8,5分)已知直线l:x+ay-1=0(aR)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=()A.2B.42C.6D.210答案C2.若直线y=kx+4+2k
3、与曲线y=4-x2有两个交点,则k的取值范围是()A.1,+)B.-1,-34C.34,1D.(-,-1答案B3.(2014安徽,6,5分)过点P(-3,-1)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是()A.0,6B.0,3C.0,6D.0,3答案D炼技法【方法集训】方法1与圆有关的最值问题的求解方法1.已知P(x,y)是直线kx+y+4=0(k0)上一点,PA是圆C:x2+y2-2y=0的一条切线,A是切点,若PA长度的最小值为2,则k的值为()A.3B.212C.22D.2答案D2.(2015江苏,10,5分)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线m
4、x-y-2m-1=0(mR)相切的所有圆中,半径最大的圆的标准方程为.答案(x-1)2+y2=2方法2求解与圆有关的切线和弦长问题的方法3.(2015安徽文,8,5分)直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b的值是()A.-2或12B.2或-12C.-2或-12D.2或12答案D4.(2014浙江文,5,5分)已知圆x2+y2+2x-2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是()A.-2B.-4C.-6D.-8答案B过专题【五年高考】A组自主命题北京卷题组1.(2014北京文,7,5分)已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B
5、(m,0)(m0).若圆C上存在点P,使得APB=90,则m的最大值为()A.7B.6C.5D.4答案B2.(2012北京文,9,5分)直线y=x被圆x2+(y-2)2=4截得的弦长为.答案223.(2014北京,19,14分)已知椭圆C:x2+2y2=4.(1)求椭圆C的离心率;(2)设O为原点.若点A在椭圆C上,点B在直线y=2上,且OAOB,试判断直线AB与圆x2+y2=2的位置关系,并证明你的结论.解析(1)由题意知,椭圆C的标准方程为x24+y22=1.所以a2=4,b2=2,从而c2=a2-b2=2.因此a=2,c=2.故椭圆C的离心率e=ca=22.(2)直线AB与圆x2+y2=
6、2相切.证明如下:设点A,B的坐标分别为(x0,y0),(t,2),其中x00.因为OAOB,所以OAOB=0,即tx0+2y0=0,解得t=-2y0x0.当x0=t时,y0=-t22,代入椭圆C的方程,得t=2,故直线AB的方程为x=2.圆心O到直线AB的距离d=2.此时直线AB与圆x2+y2=2相切.当x0t时,直线AB的方程为y-2=y0-2x0-t(x-t),即(y0-2)x-(x0-t)y+2x0-ty0=0.圆心O到直线AB的距离d=|2x0-ty0|(y0-2)2+(x0-t)2.又x02+2y02=4,t=-2y0x0,故d=2x0+2y02x0x02+y02+4y02x02+
7、4=4+x02x0x04+8x02+162x02=2.此时直线AB与圆x2+y2=2相切.B组统一命题、省(区、市)卷题组1.(2018课标,6,5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则ABP面积的取值范围是()A.2,6B.4,8C.2,32D.22,32答案A2.(2016课标,4,5分)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-43B.-34C.3D.2答案A3.(2018课标文,15,5分)直线y=x+1与圆x2+y2+2y-3=0交于A,B两点,则|AB|=.答案224.(2016课标
8、,16,5分)已知直线l:mx+y+3m-3=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点.若|AB|=23,则|CD|=.答案45.(2015湖南文,13,5分)若直线3x-4y+5=0与圆x2+y2=r2(r0)相交于A,B两点,且AOB=120(O为坐标原点),则r=.答案26.(2014重庆文,14,5分)已知直线x-y+a=0与圆心为C的圆x2+y2+2x-4y-4=0相交于A,B两点,且ACBC,则实数a的值为.答案0或67.(2014课标,16,5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得OMN=45,则x0的取值范围是.
9、答案-1,18.(2015课标文,20,12分)已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.(1)求k的取值范围;(2)若OMON=12,其中O为坐标原点,求|MN|.解析(1)由题设,可知直线l的方程为y=kx+1.因为l与C交于两点,所以|2k-3+1|1+k21.解得4-73kb0)过点(0,2),且离心率e=22.(1)求椭圆E的方程;(2)设直线l:x=my-1(mR)交椭圆E于A,B两点,判断点G-94,0与以线段AB为直径的圆的位置关系,并说明理由.解析(1)由已知得b=2,ca=22,a2=b2+c2.解得a=2,b=2,c=2.
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-592977.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
