2020版高考数学大二轮培优文科通用版能力升级练(十七) 椭圆、双曲线与抛物线 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020版高考数学大二轮培优文科通用版能力升级练十七椭圆、双曲线与抛物线 WORD版含解析 2020 高考 数学 二轮 文科 通用版 能力 升级 十七 椭圆 双曲线 抛物线 WORD 解析
- 资源描述:
-
1、能力升级练(十七)椭圆、双曲线与抛物线一、选择题1.(2019福建厦门3月质量检查)若抛物线x2=ay的焦点到准线的距离为1,则a=()A.2B.4C.2D.4解析由抛物线x2=ay,可知:焦点坐标为0,a4,准线方程为y=-a4,抛物线x2=ay的焦点到准线的距离为a4+a4=1,解得a=2,故选C.答案C2.(2019四川成都高新区高三一诊)已知椭圆C:16x2+4y2=1,则下列结论正确的是()A.长轴长为12B.焦距为34C.短轴长为14D.离心率为32解析把椭圆方程16x2+4y2=1化为标准方程可得x2116+y214=1,所以a=12,b=14,c=34,长轴长为2a=1,焦距2
2、c=32,短轴长为2b=12,离心率e=ca=32,故选D.答案D3.双曲线C1的中心在原点,焦点在x轴上,若C1的一个焦点与抛物线C2:y2=12x的焦点重合,且抛物线C2的准线交双曲线C1所得的弦长为43,则双曲线C1的实轴长为()A.6B.26C.3D.23解析设双曲线C1的方程为x2a2-y2b2=1(a0,b0).由已知,抛物线C2的焦点为(3,0),准线方程为x=-3,即双曲线中c=3,a2+b2=9;将-3代入双曲线方程,解得y=ba9-a2,又抛物线C2的准线交双曲线C1所得的弦长为43,所以2ba9-a2=43与a2+b2=9联立,得a2+23a-9=0,解得a=3,故双曲线
3、C1的实轴长为23.故选D.答案D4.(2019青海西宁四中第二次模拟)双曲线x216-y29=1的左、右焦点分别为F1,F2,在左支上过点F1的弦AB的长为5,那么ABF2的周长是()A.12B.16C.21D.26解析依题意,|AF2|-|AF1|=2a=8,|BF2|-|BF1|=2a=8,|AF2|-|AF1|+(|BF2|-|BF1|)=16,又|AB|=5,|AF2|+|BF2|=16+(|AF1|+|BF1|)=16+|AB|=16+5=21.|AF2|+|BF2|+|AB|=21+5=26.即ABF2的周长是26.故选D.答案D5.(2019广东东莞二调)直线l经过椭圆的一个顶
4、点和一个焦点,若椭圆中心到l的距离为其短轴长的14,则该椭圆的离心率为()A.13B.12C.23D.34解析设椭圆的方程为x2a2+y2b2=1,直线l经过椭圆的一个顶点和一个焦点,则直线方程为xc+yb=1,椭圆中心到l的距离为其短轴长的14,可得11c2+1b2=b2,4=b21c2+1b2,b2c2=3,a2-c2c2=3,e=ca=12.故选B.答案B6.(2019湖北七市教研协作体4月联考)过抛物线y2=2px(p0)的焦点F的直线与双曲线x2-y23=1的一条渐近线平行,并交抛物线于A,B两点,若|AF|BF|,且|AF|=2,则抛物线的方程为()A.y2=2xB.y2=3xC.
5、y2=4xD.y2=x解析抛物线y2=2px(p0)的焦点F的坐标为p2,0,准线方程为x=-p2,双曲线x2-y23=1的渐近线方程为y=3x,由于过抛物线y2=2px(p0)的焦点F的直线与双曲线x2-y23=1的一条渐近线平行,并交抛物线于A,B两点,且|AF|BF|,所以可设直线AB方程为y=3x-p2,设A(x0,y0)x0p2,则|AF|=x0+p2=2,x0=2-p2,由x0p2可得0p0,b0)的离心率为2,A,B为其左、右顶点,点P为双曲线C在第一象限的任意一点,点O为坐标原点,若PA,PB,PO的斜率为k1,k2,k3,则m=k1k2k3的取值范围为()A.(0,33)B.
6、(0,3)C.0,39D.(0,8)解析e=ca=2,b=3a,设P(x,y),则x2a2-y2b2=1,k1k2=yx+ayx-a=y2x2-a2=b2a2=3,又双曲线的渐近线为y=3x,所以0k33,故0m0,b0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为()A.2B.3C.2D.5解析如图,设PQ与x轴交于点A,由对称性可知PQx轴.|PQ|=|OF|=c,|PA|=c2.PA为以OF为直径的圆的半径,A为圆心,|OA|=c2.Pc2,c2.又点P在圆x2+y2=a2上,c24+c24=a2,即c22=a2,e2=
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-593051.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
