分享
分享赚钱 收藏 举报 版权申诉 / 5

类型2021-2022学年高中数学 第三章 导数及其应用 模块复习课 第4课时 导数及其应用课后巩固提升(含解析)新人教A版选修1-1.docx

  • 上传人:a****
  • 文档编号:602595
  • 上传时间:2025-12-11
  • 格式:DOCX
  • 页数:5
  • 大小:30.30KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021-2022学年高中数学 第三章 导数及其应用 模块复习课 第4课时 导数及其应用课后巩固提升含解析新人教A版选修1-1 2021 2022 学年 高中数学 第三 导数 及其 应用 模块 复习
    资源描述:

    1、第4课时导数及其应用课后篇巩固提升基础巩固1.已知f(x)=x3-x2+6x-a,若对任意实数x,f(x)m恒成立,则m的最大值为()A.3B.2C.1D.-解析f(x)=3x2-9x+6,因为对任意实数x,f(x)m恒成立,即3x2-9x+(6-m)0恒成立,所以=81-12(6-m)0,解得m-,即m的最大值为-,故选D.答案D2.设函数f(x)的定义域为R,x0(x00)是f(x)的极大值点,以下结论一定正确的是()A.xR,f(x)f(x0)B.-x0是f(-x)的极小值点C.-x0是-f(x)的极小值点D.-x0是-f(-x)的极小值点解析f(x)与-f(-x)的图象关于原点对称,故

    2、x0(x00)是f(x)的极大值点时,-x0是-f(-x)的极小值点,故选D.答案D3.若函数f(x)=kx-ln x在区间(1,+)内单调递增,则k的取值范围是()A.(-,-2B.(-,-1C.2,+)D.1,+)解析由f(x)=k-,又f(x)在(1,+)内单调递增,则f(x)0在x(1,+)上恒成立,即k在x(1,+)上恒成立.又当x(1,+)时,00,因此函数f(x)在R上单调递增,且f(-2)=-0,因此函数f(x)零点的个数为1,故选B.答案B5.若0x1x2ln x2-ln x1B.x1D.x2x1解析令f(x)=,则f(x)=.当0x1时,f(x)0,即f(x)在(0,1)内

    3、单调递减,0x1x21,f(x2)x1,故选C.答案C6.函数y=xex在其极值点处的切线方程为.解析令y=(x+1)ex=0,得x=-1,则切点为.函数在极值点处的导数为0,即切线斜率为0,则切线方程为y=-.答案y=-7.已知函数f(x)=axln x,x(0,+),其中a为实数,f(x)为f(x)的导函数,若f(1)=3,则a的值为.解析因为f(x)=axln x,所以f(x)=aln x+ax=a(ln x+1).由f(1)=3得a(ln 1+1)=3,所以a=3.答案38.已知函数f(x)=ex(ax2-2x+2),其中a0.(1)若曲线y=f(x)在x=2处的切线与直线x+e2y-

    4、1=0垂直,求实数a的值;(2)讨论f(x)的单调性.解f(x)=exax2+(2a-2)x(a0).(1)由题意得f(2)=-1,解得a=.(2)令f(x)=0,得x1=0,x2=.当0a1时,f(x)的单调递增区间为,(0,+),单调递减区间为.9.已知函数f(x)=(4x2+4ax+a2),其中a0得x或x(2,+),故函数f(x)的单调递增区间为和(2,+).(2)因为f(x)=,a0,由f(x)=0得x=-或x=-.当x时,f(x)单调递增;当x时,f(x)单调递减;当x时,f(x)单调递增.易知f(x)=(2x+a)20,且f=0.当-1时,即-2a0时,f(x)在1,4上的最小值

    5、为f(1),由f(1)=4+4a+a2=8,得a=2-2,均不符合题意.当1-4时,即-8a4时,即a0,f(x)在(0,1)内单调递增;当x(1,+)时,f(x)0,所以b1-恒成立.令g(x)=1-,可得g(x)=,因此g(x)在(0,1)内单调递减,在(1,+)内单调递增,所以g(x)min=g(1)=0,故b的取值范围是(-,0.能力提升1.已知函数f(x)=x(ln x-ax)有两个极值点,则实数a的取值范围是()A.(-,0)B.C.(0,1)D.(0,+)解析由题意知,x0,f(x)=ln x+1-2ax,由于函数f(x)有两个极值点,则f(x)=0有两个不相等的正根,显然a0时

    6、不合题意,必有a0.令g(x)=ln x+1-2ax,则g(x)=-2a,令g(x)=0,得x=,故g(x)在内单调递增,在内单调递减,所以g(x)在x=处取得最大值,即f=ln0,所以0a.答案B2.若函数f(x)定义域为R,且xf(x)2f(0)B.f(-1)+f(1)2f(0)C.f(-1)+f(1)=2f(0)D.f(-1)+f(1)与2f(0)的大小不确定解析由于xf(x)0时f(x)0,当x0,即函数f(x)在(-,0)内单调递增,在(0,+)内单调递减,因此f(-1)f(0),f(1)f(0),故f(-1)+f(1)0时,实数b的最小值是.解析设切点为(x0,aln x0),则y

    7、=aln x上此点处的切线为y=x+aln x0-a,故b=aln-a=aln a-aln 2-a(a0),b=ln,b在(0,2)上单调递减,在(2,+)上单调递增.b的最小值为-2.答案-25.已知函数f(x)=aex-ln x-1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a时,f(x)0.解(1)f(x)的定义域为(0,+),f(x)=aex-.由题设知,f(2)=0,所以a=.从而f(x)=ex-ln x-1,f(x)=ex-.当0x2时,f(x)2时,f(x)0.所以f(x)在(0,2)内单调递减,在(2,+)内单调递增.(2)当a时,f(x)-

    8、ln x-1.设g(x)=-ln x-1,则g(x)=.当0x1时,g(x)1时,g(x)0.所以x=1是g(x)的最小值点.故当x0时,g(x)g(1)=0.因此,当a时,f(x)0.6.设函数f(x)=ax2-(3a+1)x+3a+2ex.(1)若曲线y=f(x)在点(2,f(2)处的切线斜率为0,求a;(2)若f(x)在x=1处取得极小值,求a的取值范围.解(1)因为f(x)=ax2-(3a+1)x+3a+2ex,所以f(x)=ax2-(a+1)x+1ex.所以f(2)=(2a-1)e2.由题设知f(2)=0,即(2a-1)e2=0,解得a=.(2)由(1)得f(x)=(ax-1)(x-

    9、1)ex.当a=0时,令f(x)=0,得x=1.f(x),f(x)随x的变化情况如下表:x(-,1)1(1,+)f(x)+0-f(x)单调递增极大值单调递减f(x)在x=1处取得极大值,不合题意.当a0时,令f(x)=0,得x1=,x2=1.当x1=x2,即a=1时,f(x)=(x-1)2ex0,f(x)在R上单调递增,f(x)无极值,不合题意.当x1x2,即0a1时,f(x),f(x)随x的变化情况如下表:x(-,1)1f(x)+0-0+f(x)单调递增极大值单调递减极小值单调递增f(x)在x=1处取得极大值,不合题意.当x11时,f(x),f(x)随x的变化情况如下表:x1(1,+)f(x)+0-0+f(x)单调递增极大值单调递减极小值单调递增f(x)在x=1处取得极小值,即a1满足题意.当a0时,令f(x)=0,得x1=,x2=1.f(x),f(x)随x的变化情况如下表:x1(1,+)f(x)-0+0-f(x)单调递减极小值单调递增极大值单调递减f(x)在x=1处取得极大值,不合题意.综上所述,a的取值范围为(1,+).

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021-2022学年高中数学 第三章 导数及其应用 模块复习课 第4课时 导数及其应用课后巩固提升(含解析)新人教A版选修1-1.docx
    链接地址:https://www.ketangku.com/wenku/file-602595.html
    相关资源 更多
  • 专题10.4 二项式定理(原卷版).docx专题10.4 二项式定理(原卷版).docx
  • 专题10.3 两个计数原理、排列与组合(解析版).docx专题10.3 两个计数原理、排列与组合(解析版).docx
  • 专题10.3二项式定理及其应用(原卷版).docx专题10.3二项式定理及其应用(原卷版).docx
  • 专题10.2 统计案例(解析版).docx专题10.2 统计案例(解析版).docx
  • 专题10.2 统计案例(原卷版).docx专题10.2 统计案例(原卷版).docx
  • 专题10.2排列组合问题(解析版).docx专题10.2排列组合问题(解析版).docx
  • 专题10.10 统计与概率(2021-2023年)真题训练(解析版).docx专题10.10 统计与概率(2021-2023年)真题训练(解析版).docx
  • 专题10.1 分类加法计数原理与分步乘法计数原理(原卷版).docx专题10.1 分类加法计数原理与分步乘法计数原理(原卷版).docx
  • 专题10.1 分类加法计数原理与分步乘法计数原理(解析版).docx专题10.1 分类加法计数原理与分步乘法计数原理(解析版).docx
  • 专题10-定语从句-冲刺2023年高考每天100道语法小题限时狂练.docx专题10-定语从句-冲刺2023年高考每天100道语法小题限时狂练.docx
  • 专题10-书面表达常用词汇和高级词汇 -2023年高考英语真题分项功能词汇专项突破.docx专题10-书面表达常用词汇和高级词汇 -2023年高考英语真题分项功能词汇专项突破.docx
  • 专题10-19天晨读 晚练四步轻松掌握高考英语核心词汇词形转换.docx专题10-19天晨读 晚练四步轻松掌握高考英语核心词汇词形转换.docx
  • 专题10-12 新民主主义革命时期(好题过关)(原卷版).docx专题10-12 新民主主义革命时期(好题过关)(原卷版).docx
  • 专题10--《2021届高考英语阅读理解完型填空600高频单词20练(基础练 拔高练)》(10).docx专题10--《2021届高考英语阅读理解完型填空600高频单词20练(基础练 拔高练)》(10).docx
  • 专题10 阅读还原(杭州专用)-2023年中考英语逆袭冲刺(三年真题热门考点提炼 名校最新模拟速递)专训(浙江省专用).docx专题10 阅读还原(杭州专用)-2023年中考英语逆袭冲刺(三年真题热门考点提炼 名校最新模拟速递)专训(浙江省专用).docx
  • 专题10 阅读表达-8年(2014-2021)苏州中考英语真题分析.docx专题10 阅读表达-8年(2014-2021)苏州中考英语真题分析.docx
  • 专题10 阅读理解应用文(解析版).docx专题10 阅读理解应用文(解析版).docx
  • 专题10 阅读理解应用文(原卷版).docx专题10 阅读理解应用文(原卷版).docx
  • 专题10 阅读理解之说明文(名校最新期末真题)-2022-2023学年七年级英语下学期期末复习查缺补漏冲刺满分(牛津译林版).docx专题10 阅读理解之说明文(名校最新期末真题)-2022-2023学年七年级英语下学期期末复习查缺补漏冲刺满分(牛津译林版).docx
  • 专题10 阅读理解之说明文-2021年高考英语题型大冲关(上海专用).docx专题10 阅读理解之说明文-2021年高考英语题型大冲关(上海专用).docx
  • 专题10 阅读理解之应用文(名校最新期末真题)-2022-2023学年八年级英语下学期期末考点大串讲(牛津译林版).docx专题10 阅读理解之应用文(名校最新期末真题)-2022-2023学年八年级英语下学期期末考点大串讲(牛津译林版).docx
  • 专题10 阅读理解之应用文-2024年高考英语二轮热点题型归纳与变式演练(新高考通用)(解析版).docx专题10 阅读理解之应用文-2024年高考英语二轮热点题型归纳与变式演练(新高考通用)(解析版).docx
  • 专题10 阅读理解20篇(名校最新期末真题)-2021-2022学年八年级英语下学期期末复习查缺补漏冲刺满分(人教版).docx专题10 阅读理解20篇(名校最新期末真题)-2021-2022学年八年级英语下学期期末复习查缺补漏冲刺满分(人教版).docx
  • 专题10 阅读填表(5空)-冲刺2022年中考英语必考题型终极押题(江苏通用).docx专题10 阅读填表(5空)-冲刺2022年中考英语必考题型终极押题(江苏通用).docx
  • 专题10 阅读回答问题10篇-2023届九年级英语名校真题分类汇编(江苏专用).docx专题10 阅读回答问题10篇-2023届九年级英语名校真题分类汇编(江苏专用).docx
  • 专题10 阅读回答问题-备战2022中考英语全国名校最新模拟试题分类汇编.docx专题10 阅读回答问题-备战2022中考英语全国名校最新模拟试题分类汇编.docx
  • 专题10 阅读回答问题-备战2022中考英语全国名校最新模拟试题分类汇编(1).docx专题10 阅读回答问题-备战2022中考英语全国名校最新模拟试题分类汇编(1).docx
  • 专题10 问鼎中考宾语从句在手-【口袋书】2022年中考英语背诵手册(牛津译林版).docx专题10 问鼎中考宾语从句在手-【口袋书】2022年中考英语背诵手册(牛津译林版).docx
  • 专题10 透过语境巧记高考英语3500词.docx专题10 透过语境巧记高考英语3500词.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1