分享
分享赚钱 收藏 举报 版权申诉 / 10

类型2021-2022学年高中数学 第二章 点、直线、平面之间的位置关系测评作业(含解析)新人教A版必修2.docx

  • 上传人:a****
  • 文档编号:602705
  • 上传时间:2025-12-11
  • 格式:DOCX
  • 页数:10
  • 大小:375.12KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021-2022学年高中数学 第二章 点、直线、平面之间的位置关系测评作业含解析新人教A版必修2 2021 2022 学年 高中数学 第二 直线 平面 之间 位置 关系 测评 作业 解析 新人 必修
    资源描述:

    1、第二章测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.教室内有一直尺,无论怎样放置,在地面内总有这样的直线,使得它与直尺所在的直线()A.平行B.垂直C.相交D.异面解析当直尺垂直于地面时,A错误;当直尺平行于地面时,C错误;当直尺位于地面上时,D错误.答案B2.平面与平面,都相交,则这3个平面的交线可能有()A.1条或2条B.2条或3条C.只有2条D.1条或2条或3条解析当平面过平面与的交线时,这3个平面有1条交线;当时,与和各有1条交线,共有2条交线;当=b,=a,=c时,这3个平面有3条交线

    2、.答案D3.异面直线a,b分别在平面,内,若=l,则直线l必定()A.分别与a,b相交B.与a,b都不相交C.至少与a,b中一条相交D.至多与a,b中一条相交解析假设al,bl,则ab,这与a,b异面矛盾.又a与l共面,b与l共面,所以l至少与a,b中的一条相交.答案C4.如图所示,在正方体ABCD-A1B1C1D1中,若E是A1C1的中点,则直线CE垂直于()A.ACB.BDC.A1DD.A1D1解析由BDAC,BDAA1,知BD平面ACC1A1.又CE平面ACC1A1,BDCE.故选B.答案B5.如图,PA矩形ABCD,下列结论中不正确的是()A.PDBDB.PDCDC.PBBCD.PAB

    3、D解析PA矩形ABCD,PABD,D正确;若PDBD,则BD平面PAD.又BA平面PAD,则过平面外一点有两条直线与平面垂直,不成立,A不正确;PA矩形ABCD,PACD,ADCD,CD平面PAD,PDCD,B正确;同理可证PBBC,C正确.答案A6.在等腰直角三角形ABC中,AB=BC=1,M为AC的中点,沿BM把它折成二面角,折后A与C的距离为1,则二面角C-BM-A的大小为()A.30B.60C.90D.120解析如图,由AB=BC=1,ABC=90知AC=2.M为AC的中点,MC=AM=22,且CMBM,AMBM,CMA为二面角C-BM-A的平面角.AC=1,MC=MA=22,CMA=

    4、90,故选C.答案C7.已知三条相交于一点的线段PA,PB,PC两两垂直,且A,B,C在同一平面内,P在平面ABC外,PH平面ABC于H,则垂足H是ABC的()A.内心B.外心C.重心D.垂心解析连接AH并延长交BC于D,如图所示.由于PH平面ABC,则BCPH,又PAPB,PAPC,则PA平面PBC,所以BCPA.因为PH平面PAD,PAPH=P,所以BC平面PAD.又AH平面PAD,所以AHBC.同理可证BHAC,CHAB,所以垂足H是ABC的垂心.答案D8.若m、n表示直线,表示平面,则下列命题中,正确命题的个数为()mnmn;mnmn;mnmn;mmnn.A.1B.2C.3D.4解析正

    5、确,中n与平面可能有:n或n或相交(包括n).答案C9.已知:平面平面,=l,在l上取线段AB=4,AC,BD分别在平面和平面内,且ACAB,DBAB,AC=3,BD=12,则CD的长度为()A.13B.151C.123D.15解析如图,连接AD.平面平面,AC平面,DB平面.在RtABD中,AD=AB2+BD2=42+122=160=410.在RtCAD中,CD=AC2+AD2=32+160=13.答案A10.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为()A.ACBDB.AC=BDC.AC截面PQMND.异面直线PM与BD所成的角为45解析因为截面PQMN是正

    6、方形,所以PQMN,QMPN,又因为PQ平面ACD,QM平面BDA,所以PQ平面ACD,QM平面BDA,所以PQAC,QMBD.由PQQM可得ACBD,A正确;由PQAC可得AC截面PQMN,C正确;PNPQ,ACBD,又BDPN,MPN是异面直线PM与BD所成的角,且为45,D正确;由上面可知:BDPN,PQAC.PNBD=ANAD,MNAC=DNAD,而ANDN,PN=MN,BDAC.B错误.故选B.答案B11.在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成的角的正弦值为()A.63B.255C.155D.105解析在平面A1B1C1D1内

    7、过点C1作B1D1的垂线,垂足为E,连接BE.C1EB1D1C1EBB1C1E平面BDD1B1,C1BE的正弦值就是所求角的正弦值.BC1=22+12=5,C1E=2222=2,sinC1BE=C1EBC1=25=105.答案D12.如图,在正四棱锥S-ABCD(顶点S在底面ABCD上的射影是正方形ABCD的中心)中,E是BC的中点,点P在侧面SCD内及其边界上运动,并且总是保持PEAC.则动点P的轨迹与SCD组成的相关图形最有可能是图中的()解析如图,连接BD与AC相交于点O,连接SO,取SC的中点F,取CD的中点G,连接EF,EG,FG,因为E,F分别是BC,SC的中点,所以EFSB,EF

    8、平面SBD,SB平面SBD,所以EF平面SBD,同理可证EG平面SBD,又EFEG=E,所以平面EFG平面SBD.由题意得SO平面ABCD,ACSO,因为ACBD,又SOBD=O,所以AC平面SBD,所以AC平面EFG,所以ACGF,所以点P在直线GF上.答案A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.设平面平面,A,C,B,D,直线AB与CD交于点S,且点S位于平面,之间,AS=8,BS=6,CS=12,则SD=.解析如图所示,则直线AB,CD确定一个平面ACBD.,ACBD,ASSB=CSSD,86=12SD,解得SD=9.答案914.如图所示,在四棱

    9、柱ABCD-A1B1C1D1中,侧棱垂直于底面,当四边形A1B1C1D1满足条件时,有A1CB1D1(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况).解析由题意可知CC1平面A1B1C1D1,所以CC1B1D1,要使得B1D1A1C,只要B1D1平面A1CC1.所以只要B1D1A1C1.此题还可以填写四边形A1B1C1D1是菱形、正方形等条件.答案B1D1A1C1(或:A1B1C1D1是正方形,答案不唯一)15.已知在菱形ABCD中,AB=2,A=120,沿对角线BD将ABD折起使二面角A-BD-C为120,则点A到BCD所在平面的距离为.解析设ACBD=O,则翻折后AOBD,CO

    10、BD,即AOC即为二面角的平面角,所以AOC=120,且AO=1,故d=1sin60=32.答案3216.如图,在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA底面ABCD,AB=3,BC=1,PA=2,E为PD的中点,则直线BE与平面ABCD所成角的正切值为.解析取AD的中点F,连接EF,BF,则EFPA,由侧棱PA底面ABCD,知EF底面ABCD,则EBF为BE与平面ABCD所成角.答案21313三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)(2018全国2,文19)如图,在三棱锥P-ABC中,AB=BC=22,PA=PB=P

    11、C=AC=4,O为AC的中点.(1)证明:PO平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.解(1)因为AP=CP=AC=4,O为AC的中点,所以OPAC,且OP=23.连接OB,因为AB=BC=22AC,所以ABC为等腰直角三角形,且OBAC,OB=12AC=2.由OP2+OB2=PB2知,OPOB.由OPOB,OPAC知PO平面ABC.(2)作CHOM,垂足为H.又由(1)可得OPCH,所以CH平面POM.故CH的长为点C到平面POM的距离.由题设可知OC=12AC=2,CM=23BC=423,ACB=45.所以OM=253,CH=OCMCsinACBOM=

    12、455.所以点C到平面POM的距离为455.18.(本小题满分12分)如图所示,已知三棱锥P-ABC,ACB=90,CB=4,AB=20,D为AB的中点,且PDB是正三角形,PAPC.(1)求证:平面PAC平面ABC;(2)求二面角D-AP-C的正弦值.(1)证明D是AB的中点,PDB是正三角形,AB=20,PD=12AB=10,APPB.又APPC,PBPC=P,AP平面PBC.又BC平面PBC,APBC.又ACBC,APAC=A,BC平面PAC.又BC平面ABC,平面PAC平面ABC.(2)解PAPC,且PAPB,BPC是二面角D-AP-C的平面角.由(1)知BC平面PAC,则BCPC,s

    13、inBPC=BCPB=25.19.(本小题满分12分)如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.(1)证明:平面AMD平面BMC;(2)在线段AM上是否存在点P,使得MC平面PBD?说明理由.解(1)由题设知,平面CMD平面ABCD,交线为CD.因为BCCD,BC平面ABCD,所以BC平面CMD,故BCDM.因为M为CD上异于C,D的点,且DC为直径,所以DMCM.又BCCM=C,所以DM平面BMC.而DM平面AMD,故平面AMD平面BMC.(2)当P为AM的中点时,MC平面PBD.证明如下:连接AC交BD于O.因为四边形ABCD为矩形,所以O为AC中点.连

    14、接OP,因为P为AM中点,所以MCOP.MC平面PBD,OP平面PBD,所以MC平面PBD.20.(本小题满分12分)(2018全国1,文18)如图,在平行四边形ABCM中,AB=AC=3,ACM=90.以AC为折痕将ACM折起,使点M到达点D的位置,且ABDA.(1)证明:平面ACD平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=23DA,求三棱锥Q-ABP的体积.解(1)由已知可得,BAC=90,BAAC.又BAAD,所以AB平面ACD.又AB平面ABC,所以平面ACD平面ABC.(2)由已知可得,DC=CM=AB=3,DA=32.又BP=DQ=23DA,所以BP=

    15、22.作QEAC,垂足为E,则QE􀱀13DC.由已知及(1)可得DC平面ABC,所以QE平面ABC,QE=1.因此,三棱锥Q-APB的体积为VQ-ABP=13QESABP=13112322sin45=1.21.(本小题满分12分)如图,三棱柱ABC-A1B1C1的底面ABC是等腰直角三角形,AB=AC=1,侧棱AA1底面ABC,且AA1=2,E是BC的中点.(1)求异面直线AE与A1C所成角的余弦值;(2)求直线A1C与平面BCC1B1所成角的正切值.解(1)在三棱柱ABC-A1B1C1中,取C1B1的中点H,连A1H与HC.E是BC的中点,A1HAE,CA1H是异面直线AE

    16、与A1C所成角.底面ABC是等腰直角三角形,E是BC的中点,AEBC,A1HBC.侧棱AA底面ABC,侧棱B1BA1H,A1H平面BCC1B1,A1HHC.在RtA1HC中,cosCA1H=A1HA1C=225=1010.(2)由(1)知A1H平面BCC1B1,A1C在平面BCC1B1上的射影是HC,A1CH是直线A1C与平面BCC1B1所成的角,在RtA1HC中,tanA1CH=A1HHC=22322=13.22.(本小题满分12分)(2018北京,文18)如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD平面ABCD,PAPD,PA=PD,E,F分别为AD,PB的中点.(1)求证

    17、:PEBC;(2)求证:平面PAB平面PCD;(3)求证:EF平面PCD.证明(1)PA=PD,且E为AD的中点,PEAD.底面ABCD为矩形,BCAD,PEBC.(2)底面ABCD为矩形,ABAD.平面PAD平面ABCD,AB平面PAD.ABPD.又PAPD,PAAB=A,PD平面PAB.PD平面PCD,平面PAB平面PCD.(3)如图,取PC的中点G,连接FG,GD.F,G分别为PB和PC的中点,FGBC,且FG=12BC.四边形ABCD为矩形,且E为AD的中点,EDBC,ED=12BC,EDFG,且ED=FG,四边形EFGD为平行四边形,EFGD.又EF平面PCD,GD平面PCD,EF平面PCD.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021-2022学年高中数学 第二章 点、直线、平面之间的位置关系测评作业(含解析)新人教A版必修2.docx
    链接地址:https://www.ketangku.com/wenku/file-602705.html
    相关资源 更多
  • 专题13确定圆的条件、直线和圆的位置关系 (5个知识点8种题型)(解析版).docx专题13确定圆的条件、直线和圆的位置关系 (5个知识点8种题型)(解析版).docx
  • 专题13确定圆的条件、直线和圆的位置关系 (5个知识点8种题型)(原卷版).docx专题13确定圆的条件、直线和圆的位置关系 (5个知识点8种题型)(原卷版).docx
  • 专题13求解摩擦力(知识点复习 例题讲解 过关练习)-备战2023年中考物理一轮复习考点帮 (解析版).docx专题13求解摩擦力(知识点复习 例题讲解 过关练习)-备战2023年中考物理一轮复习考点帮 (解析版).docx
  • 专题13求解摩擦力(知识点复习 例题讲解 过关练习)-备战2023年中考物理一轮复习考点帮 (原卷版).docx专题13求解摩擦力(知识点复习 例题讲解 过关练习)-备战2023年中考物理一轮复习考点帮 (原卷版).docx
  • 专题13新定义与规律探究题(真题21模拟21)-备战2023年中考数学历年真题 1年模拟新题分项详解(重庆专用)【解析版】.docx专题13新定义与规律探究题(真题21模拟21)-备战2023年中考数学历年真题 1年模拟新题分项详解(重庆专用)【解析版】.docx
  • 专题13新定义与规律探究题(真题21模拟21)-备战2023年中考数学历年真题 1年模拟新题分项详解(重庆专用)【原卷版】.docx专题13新定义与规律探究题(真题21模拟21)-备战2023年中考数学历年真题 1年模拟新题分项详解(重庆专用)【原卷版】.docx
  • 专题13整式运算——天津市2023年初三各区数学模拟考试题型分类汇编.docx专题13整式运算——天津市2023年初三各区数学模拟考试题型分类汇编.docx
  • 专题13平衡中的临界和极值问题.docx专题13平衡中的临界和极值问题.docx
  • 专题13平行线之猪脚模型(M模型)-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(解析版).docx专题13平行线之猪脚模型(M模型)-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(解析版).docx
  • 专题13平行线之猪脚模型(M模型)-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(原卷版).docx专题13平行线之猪脚模型(M模型)-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(原卷版).docx
  • 专题13带电粒子在有界匀强磁场中的运动(解析版).docx专题13带电粒子在有界匀强磁场中的运动(解析版).docx
  • 专题13带电粒子在有界匀强磁场中的运动(原卷版).docx专题13带电粒子在有界匀强磁场中的运动(原卷版).docx
  • 专题13寒假成果评价卷 (测试范围:一次函数、代数方程)(解析版).docx专题13寒假成果评价卷 (测试范围:一次函数、代数方程)(解析版).docx
  • 专题13寒假成果评价卷 (测试范围:一次函数、代数方程)(原卷版).docx专题13寒假成果评价卷 (测试范围:一次函数、代数方程)(原卷版).docx
  • 专题13二次函数图象性质(选填50题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期).docx专题13二次函数图象性质(选填50题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期).docx
  • 专题13二次函数图象性质(选填50题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期).docx专题13二次函数图象性质(选填50题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期).docx
  • 专题13二次函数图象性质与应用(共38题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期).docx专题13二次函数图象性质与应用(共38题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期).docx
  • 专题13二次函数图象性质与应用(共38题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第01期).docx专题13二次函数图象性质与应用(共38题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第01期).docx
  • 专题13二次函数与胡不归型最值问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(解析版).docx专题13二次函数与胡不归型最值问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(解析版).docx
  • 专题13二次函数与胡不归型最值问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx专题13二次函数与胡不归型最值问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx
  • 专题13不等式B辑(教师版含解析)备战2021年高中数学联赛之1981-2020年高中数学联赛一试试题分专题训练.docx专题13不等式B辑(教师版含解析)备战2021年高中数学联赛之1981-2020年高中数学联赛一试试题分专题训练.docx
  • 专题13不等式B辑(学生版)备战2021年高中数学联赛之1981-2020年高中数学联赛一试试题分专题训练.docx专题13不等式B辑(学生版)备战2021年高中数学联赛之1981-2020年高中数学联赛一试试题分专题训练.docx
  • 专题13 实验:探究弹力和弹簧伸长的关系.docx专题13 实验:探究弹力和弹簧伸长的关系.docx
  • 专题13 二次函数的应用.docx专题13 二次函数的应用.docx
  • 专题13.Unit3写作与阅读(选择性必修第一册)答案全解全析.docx专题13.Unit3写作与阅读(选择性必修第一册)答案全解全析.docx
  • 专题13.9 三角形中的边角关系、命题与证明章末八大题型总结(拔尖篇)(沪科版)(解析版).docx专题13.9 三角形中的边角关系、命题与证明章末八大题型总结(拔尖篇)(沪科版)(解析版).docx
  • 专题13.9 三角形中的边角关系、命题与证明章末八大题型总结(拔尖篇)(沪科版)(原卷版).docx专题13.9 三角形中的边角关系、命题与证明章末八大题型总结(拔尖篇)(沪科版)(原卷版).docx
  • 专题13.8 三角形中的边角关系、命题与证明章末九大题型总结(培优篇)(沪科版)(解析版).docx专题13.8 三角形中的边角关系、命题与证明章末九大题型总结(培优篇)(沪科版)(解析版).docx
  • 专题13.8 三角形中的边角关系、命题与证明章末九大题型总结(培优篇)(沪科版)(原卷版).docx专题13.8 三角形中的边角关系、命题与证明章末九大题型总结(培优篇)(沪科版)(原卷版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1