2021届新高考数学(文)二轮复习专题能力训练8 利用导数解不等式及参数范围 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021届新高考数学文二轮复习专题能力训练8利用导数解不等式及参数范围 WORD版含解析 2021 新高 数学 二轮 复习 专题 能力 训练 利用 导数 不等式 参数 范围 WORD 解析
- 资源描述:
-
1、专题能力训练8利用导数解不等式及参数范围一、能力突破训练1.(2020全国,文20)已知函数f(x)=x3-kx+k2.(1)讨论f(x)的单调性;(2)若f(x)有三个零点,求k的取值范围.2.已知函数f(x)=aex-ln x-1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a1e时,f(x)0.3.已知函数f(x)=ax+xln x的图象在x=e(e为自然对数的底数)处的切线的斜率为3.(1)求实数a的值;(2)若f(x)kx2对任意x0成立,求实数k的取值范围;(3)当nm1(m,nN*)时,证明:nmmnmn.4.已知函数f(x)=ln x-ax,其
2、中aR.(1)当a=-1时,判断f(x)的单调性;(2)若g(x)=f(x)+ax在其定义域内为减函数,求实数a的取值范围;(3)当a=0时,函数f(x)的图象关于y=x对称得到函数h(x)的图象,若直线y=kx与曲线y=2x+1h(x)没有公共点,求k的取值范围.5.设函数f(x)=aln x,g(x)=12x2.(1)记g(x)为g(x)的导函数,若不等式f(x)+2g(x)(a+3)x-g(x)在x1,e内有解,求实数a的取值范围;(2)若a=1,对任意的x1x20,不等式mg(x1)-g(x2)x1f(x1)-x2f(x2)恒成立,求m(mZ,m1)的值.6.已知函数f(x)=ln x
3、-(x-1)22.(1)求函数f(x)的单调递增区间;(2)证明:当x1时,f(x)1,当x(1,x0)时,恒有f(x)k(x-1).二、思维提升训练7.已知函数f(x)=x3+ax2+bx+1(a0,bR)有极值,且导函数f(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数解析式,并写出定义域;(2)证明:b23a;(3)若f(x),f(x)这两个函数的所有极值之和不小于-72,求a的取值范围.8.设函数f(x)=x3-ax-b,xR,其中a,bR.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1x0
4、,求证:x1+2x0=0;(3)设a0,函数g(x)=|f(x)|,求证:g(x)在区间-1,1上的最大值不小于14.专题能力训练8利用导数解不等式及参数范围一、能力突破训练1.解(1)f(x)=3x2-k.当k=0时,f(x)=x3,故f(x)在区间(-,+)上单调递增;当k0,故f(x)在区间(-,+)上单调递增.当k0时,令f(x)=0,得x=3k3.当x-,-3k3时,f(x)0;当x-3k3,3k3时,f(x)0.故f(x)在区间-,-3k3,3k3,+内单调递增,在区间-3k3,3k3内单调递减.(2)由(1)知,当k0时,f(x)在区间(-,+)上单调递增,f(x)不可能有三个零
5、点.当k0时,x=-3k3为f(x)的极大值点,x=3k3为f(x)的极小值点.此时,-k-1-3k33k3k+1且f(-k-1)0,f-3k30.根据f(x)的单调性,当且仅当f3k30,即k2-2k3k90时,f(x)有三个零点,解得k427.因此k的取值范围为0,427.2.(1)解f(x)的定义域为(0,+),f(x)=aex-1x.由题设知,f(2)=0,所以a=12e2.从而f(x)=12e2ex-lnx-1,f(x)=12e2ex-1x.当0x2时,f(x)2时,f(x)0.所以f(x)在区间(0,2)内单调递减,在区间(2,+)内单调递增.(2)证明当a1e时,f(x)exe-
6、lnx-1.设g(x)=exe-lnx-1,则g(x)=exe-1x.当0x1时,g(x)1时,g(x)0.所以x=1是g(x)的最小值点.故当x0时,g(x)g(1)=0.因此,当a1e时,f(x)0.3.(1)解f(x)=ax+xlnx,f(x)=a+lnx+1.又f(x)的图象在x=e处的切线的斜率为3,f(e)=3,即a+lne+1=3,a=1.(2)解由(1)知,f(x)=x+xlnx,若f(x)kx2对任意x0成立,则k1+lnxx对任意x0成立.令g(x)=1+lnxx,则问题转化为求g(x)的最大值,g(x)=1xx-(1+lnx)x2=-lnxx2.令g(x)=0,解得x=1
7、.当0x0,g(x)在区间(0,1)内是增函数;当x1时,g(x)0),h(x)0,h(x)是区间(1,+)内的增函数.nm1,h(n)h(m),即nlnnn-1mlnmm-1,mnlnn-nlnnmnlnm-mlnm,即mnlnn+mlnmmnlnm+nlnn,lnnmn+lnmmlnmmn+lnnn.整理,得ln(mnn)mln(nmm)n.(mnn)m(nmm)n,nmmnmn.4.解(1)当a=-1时,f(x)=lnx+1x,函数f(x)的定义域为(0,+),且f(x)=x-1x2,当0x1时,f(x)1时,f(x)0,f(x)在区间(0,1)内为减函数,在区间(1,+)内为增函数.(
8、2)由g(x)=f(x)+ax=lnx-ax+ax,可知函数g(x)的定义域为(0,+),g(x)=ax2+x+ax2.g(x)在其定义域内为减函数,x(0,+),g(x)0.ax2+x+a0a(x2+1)-xa-xx2+1a-xx2+1min.又xx2+1=1x+1x12,-xx2+1-12,当且仅当x=1时取等号.a-12.(3)当a=0时,f(x)=lnx,h(x)=ex.直线l:y=kx与曲线y=2x+1h(x)=2x+1ex没有公共点,等价于关于x的方程(k-2)x=1ex(*)在R上没有实数解,当k=2时,方程(*)可化为1ex=0,其在R上没有实数解.当k2时,方程(*)可化为1
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-611365.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
江苏省启东中学2021届高三地理上学期期初考试试题PDF.pdf
