分享
分享赚钱 收藏 举报 版权申诉 / 16

类型2022-2023学年京改版八年级数学上册第十一章实数和二次根式综合测试试题(解析卷).docx

  • 上传人:a****
  • 文档编号:634330
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:16
  • 大小:290.26KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 改版 八年 级数 上册 第十一 实数 二次 根式 综合测试 试题 解析
    资源描述:

    1、八年级数学上册第十一章实数和二次根式综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在根式,中,与是同类二次根式的有()A1个B2个C3个D4个2、下列实数中,为有理数的是()ABC1D3、下列计

    2、算正确的是()A2B2C2D24、化简的结果是()AB4CD25、如果y+3,那么yx的算术平方根是()A2B3C9D36、运算后结果正确的是()ABCD7、实数a在数轴上的位置如图所示,则+化简后为()A7B7C2a15D无法确定8、下列等式正确的是()A()2=3B=3C=3D()2=39、下列实数:3,0,0.35,其中最小的实数是()A3B0CD0.3510、下列各数:-2,0,0.020020002,其中无理数的个数是()A4B3C2D1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若a、b为实数,且b+4,则a+b_2、如图,在长方形ABCD内,两个小正方

    3、形的面积分别为分别为 1,2,则图中阴影部分的面积等于_3、 _, _4、若将三个数,表示在数轴上,则被如图所示的墨迹覆盖的数是_.5、计算:的结果是_三、解答题(5小题,每小题10分,共计50分)1、计算题(1);(2);(3)2、已知x,y,求下列代数式的值(1)x23xy+y2(2)3、阅读理解题:定义:如果一个数的平方等于-1,记为,这个数i叫做虚数单位,那么和我们所学的实数对应起来就叫做复数,复数一般表示为(,为实数),叫做这个复数的实部,叫做这个复数的虚部,它与整式的加法,减法,乘法运算类似例如:解方程,解得:,同样我们也可以化简读完这段文字,请你解答以下问题:(1)填空:_,_,

    4、_(2)已知,写出一个以,的值为解的一元二次方程(3)在复数范围内解方程:4、若和互为相反数,求的值5、计算:(1);(2)-参考答案-一、单选题1、B【解析】【分析】二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式,继而可得出答案【详解】=5,=,=,故与是同类二次根式的有:,共2个,故选B.【考点】本题考查了同类二次根式的知识,解题的关键是掌握同类二次根式是化为最简二次根式后被开方数相同的二次根式2、C【解析】【分析】根据有理数是有限小数或无限循环小数可判断C,无理数是无限不循环小数,可判断A、B、D即可【详解】解:,是无理数,1是有理数故选C【考点】

    5、本题考查了实数,正确区分有理数与无理数是解题的关键3、A【解析】【分析】根据算数平方根的定义可判断:若一个正数的平方等于a,则这个正数就是a的算数平方根【详解】解:A、,选项正确,符合题意;B、,选项错误,不符合题意;C、,选项错误,不符合题意;D、,选项错误,不符合题意;故选:A【考点】本题考查了算术平方根的定义,解题的关键是注意区别算数平方根和平方根4、D【解析】【分析】根据算术平方根的定义进行求解即可【详解】;故选D【考点】本题考查了算术平方根,熟练掌握算术平方根的定义是解题的关键5、B【解析】【详解】解:由题意得:x20,2x0,解得:x=2,y=3,则yx=9,9的算术平方根是3故选

    6、B6、C【解析】【分析】根据实数的运算法则即可求解;【详解】解:A.,故错误;B.,故错误;C.,故正确;D.,故错误;故选:C【考点】本题主要考查实数的计算,掌握实数计算的相关法则是解题的关键7、A【解析】【详解】根据二次根式的性质可得:+,因为,所以原式=,故选A.8、A【解析】【分析】根据二次根式的性质把各个二次根式化简,判断即可【详解】解:()2=3,A正确,符合题意;=3,B错误,不符合题意;=,C错误,不符合题意;(-)2=3,D错误,不符合题意;故选A【考点】本题考查的是二次根式的化简,掌握二次根式的性质:=|a|是解题的关键9、C【解析】【分析】正实数都大于0,负实数都小于0,

    7、正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可【详解】解:根据实数比较大小的方法,可得00.353,所以最小的实数是,故选:C【考点】本题考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数0负实数,两个负实数绝对值大的反而小10、C【解析】【详解】分析:根据无理数与有理数的概念进行判断即可得.详解:是有理数,0是有理数,是有理数,0.020020002是无理数,是无理数,是有理数,所以无理数有2个,故选C.点睛:本题考查了无理数定义,初中范围内学习的无理数有三类:类,如2,3等;开方开不尽的数,如,等;虽有规律但是无限不循环的数,如0.1010010001,等

    8、.二、填空题1、5或3【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a的值,b的值,根据有理数的加法,可得答案【详解】由被开方数是非负数,得,解得a1,或a1,b4,当a1时,a+b1+45,当a1时,a+b1+43,故答案为5或3【考点】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负2、#【解析】【分析】由两个小正方形的面积分别为1,2,得出其边长分别为1和,则阴影部分合起来是长等于1,宽等于()的长方形,从而可得答案【详解】解:面积

    9、为2的正方形的边长为:,面积为1的正方形的边长为:1,则阴影部分面积为:故答案为:【考点】本题考查了平方根在面积计算中的应用,根据题意求解出正方形的边长是解题的关键3、 , 3【解析】【分析】根据求立方根和二次根式的乘方运算法则分别计算即可得到结果【详解】解:;,故答案为:-3;3【考点】此题主要考查了实数的运算,熟练掌握运算法则是解答此题的关键4、【解析】【分析】根据数轴确定出被覆盖的数的范围,再根据无理数的大小确定出答案即可【详解】因为,所以,所以,故不在此范围;因为,所以,故在此范围;因为,所以,故不在此范围.所以被墨迹覆盖的数是.故答案为.【考点】此题考查估算无理数的大小,实数与数轴,

    10、解题关键在于估算出取值范围.5、【解析】【分析】根据二次根式的性质计算,即可得到答案【详解】故答案为:【考点】本题考查了二次根式的知识;解题的关键是熟练掌握二次根式的性质,从而完成求解三、解答题1、 (1)(2)(3)【解析】【分析】(1)根据二次根式的运算可进行求解;(2)化简二次根式,然后再进行求解;(3)根据立方根及实数的运算可进行求解(1)解:原式=;(2)解:原式=;(3)解:原式=【考点】本题主要考查二次根式的运算及立方根,熟练掌握二次根式的运算及立方根是解题的关键2、(1)11;(2)2【解析】【分析】(1)原式利用完全平方公式变形,把x与y的值代入计算即可求出值;(2)原式通分

    11、并利用同分母分式的减法法则计算,把x与y的值代入计算即可求出值【详解】解:x2+,y2,(1)原式(x+y)25xy(2+2)25(2+)(2)16511;(2)原式2【考点】本题考查二次根式的化简求值,一定要先分母有理化将条件化简再代入求值二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰3、(1)-i,1,0;(2);(3),【解析】【分析】(1)根据题意,则,然后计算即可;(2)利用,得到,即可求解(3)利用配方法求解即可【详解】(1),同理:,每四个为一组,和为0,共有组,(2),以,的值为解的一元二次方程可以为:(3),【考点】本题考查了实数的运算,解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键4、【解析】【分析】根据两个数的立方根互为相反数得出:2a1=3b1,推出2a=3b,即可得出答案【详解】和互为相反数,+0,2a1+13b0,2a13b1, 2a3b,=【考点】本题考查了立方根和相反数的概念,关键是由两个数的立方根互为相反数得出两个数互为相反数5、 (1)(2)【解析】【分析】(1)先化简,再合并同类二次根式;(2)先化简括号内二次根式再合并,再利用二次根式乘法计算即可(1)解: ;(2)解:【考点】本题考查了二次根式的混合运算,掌握二次根式的性质是解本题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年京改版八年级数学上册第十一章实数和二次根式综合测试试题(解析卷).docx
    链接地址:https://www.ketangku.com/wenku/file-634330.html
    相关资源 更多
  • 专题09 应用文写作(9)-研读近十年高考英语满分书面表达聚焦2023高考.docx专题09 应用文写作(9)-研读近十年高考英语满分书面表达聚焦2023高考.docx
  • 专题09 应用文写作12篇(第二期)-2023高考英语名校模拟真题速递(新高考专用).docx专题09 应用文写作12篇(第二期)-2023高考英语名校模拟真题速递(新高考专用).docx
  • 专题09 应用文写作-2022-2023学年高二英语上学期期末专项复习(译林版2020).docx专题09 应用文写作-2022-2023学年高二英语上学期期末专项复习(译林版2020).docx
  • 专题09 平面直角坐标系(解析版).docx专题09 平面直角坐标系(解析版).docx
  • 专题09 平面直角坐标系(原卷版).docx专题09 平面直角坐标系(原卷版).docx
  • 专题09 平面直角坐标系与函数(11个高频考点)(举一反三)(全国版)(解析版).docx专题09 平面直角坐标系与函数(11个高频考点)(举一反三)(全国版)(解析版).docx
  • 专题09 平面直角坐标系与函数(11个高频考点)(举一反三)(全国版)(原卷版).docx专题09 平面直角坐标系与函数(11个高频考点)(举一反三)(全国版)(原卷版).docx
  • 专题09 平面直角坐标系与函数基础(解析版).docx专题09 平面直角坐标系与函数基础(解析版).docx
  • 专题09 平面直角坐标系与函数基础(考点回归).docx专题09 平面直角坐标系与函数基础(考点回归).docx
  • 专题09 平面直角坐标系与函数基础(原卷版).docx专题09 平面直角坐标系与函数基础(原卷版).docx
  • 专题09 平面直角坐标系与函数基础知识(共30道)(教师版)(02期)-2023年中考数学真题分类训练.docx专题09 平面直角坐标系与函数基础知识(共30道)(教师版)(02期)-2023年中考数学真题分类训练.docx
  • 专题09 平面直角坐标系与函数基础知识(共30道)(学生版)(02期)-2023年中考数学真题分类训练.docx专题09 平面直角坐标系与函数基础知识(共30道)(学生版)(02期)-2023年中考数学真题分类训练.docx
  • 专题09 平面向量及复数、推理证明-【口袋书】2022年高考数学复习思维导图(新高考地区专用).docx专题09 平面向量及复数、推理证明-【口袋书】2022年高考数学复习思维导图(新高考地区专用).docx
  • 专题09 平面向量、不等式及复数(解析版).docx专题09 平面向量、不等式及复数(解析版).docx
  • 专题09 平面向量、不等式及复数(原卷版).docx专题09 平面向量、不等式及复数(原卷版).docx
  • 专题09 平面向量 9.3三角形四心及面积问题 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题09 平面向量 9.3三角形四心及面积问题 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题09 平面向量 9.2数量积 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题09 平面向量 9.2数量积 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题09 平面向量 9.2数量积 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题09 平面向量 9.2数量积 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题09 平面向量 9.1线性运算、基本定理和坐标运算 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题09 平面向量 9.1线性运算、基本定理和坐标运算 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题09 幂运算(三大类型)-2022-2023学年七年级数学下册《高分突破•培优新方法》(苏科版).docx专题09 幂运算(三大类型)-2022-2023学年七年级数学下册《高分突破•培优新方法》(苏科版).docx
  • 专题09 导数的概念意义及运算(考点清单)(解析版).docx专题09 导数的概念意义及运算(考点清单)(解析版).docx
  • 专题09 导数的概念意义及运算(考点清单)(原卷版).docx专题09 导数的概念意义及运算(考点清单)(原卷版).docx
  • 专题09 导数大题训练理科(教师版).docx专题09 导数大题训练理科(教师版).docx
  • 专题09 导数压轴题之拉格朗日中值定理详述版(解析版).docx专题09 导数压轴题之拉格朗日中值定理详述版(解析版).docx
  • 专题09 导数压轴题之拉格朗日中值定理详述版(原卷版).docx专题09 导数压轴题之拉格朗日中值定理详述版(原卷版).docx
  • 专题09 家庭生活-备战2022高考英语阅读七选五热点话题 体裁分类训练(高考模拟 名校真题).docx专题09 家庭生活-备战2022高考英语阅读七选五热点话题 体裁分类训练(高考模拟 名校真题).docx
  • 专题09 实验设计重方法-备战2022年中考化学必背手册(南京专用).docx专题09 实验设计重方法-备战2022年中考化学必背手册(南京专用).docx
  • 专题09 完成图表(名校模拟 地区真题)-冲刺2023年中考英语必考题型终极预测(成都专用).docx专题09 完成图表(名校模拟 地区真题)-冲刺2023年中考英语必考题型终极预测(成都专用).docx
  • 专题09 完成句子80题-2023年中考英语逆袭冲刺名校模拟真题特快专递(广州专用).docx专题09 完成句子80题-2023年中考英语逆袭冲刺名校模拟真题特快专递(广州专用).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1