分享
分享赚钱 收藏 举报 版权申诉 / 27

类型2022-2023学年北师大版八年级数学上册第一章勾股定理综合测评试卷(解析版含答案).docx

  • 上传人:a****
  • 文档编号:637557
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:27
  • 大小:1.36MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 北师大 八年 级数 上册 第一章 勾股定理 综合 测评 试卷 解析 答案
    资源描述:

    1、北师大版八年级数学上册第一章勾股定理综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组数据为三角形的三边,能构成直角三角形的是()A4,8,7B2,2,2C2,2,4D13,12,52、九章

    2、算术是我国古代数学名著,记载着这样一个问题:“今有池方一丈,葭生其中央,出水一尺引葭赴岸,适与岸齐问水深、葭长各几何?”大意是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面水的深度与这根芦苇的长度分别是多少?设芦苇的长度为x尺,则可列方程为()Ax2+52(x+1)2Bx2+102(x+1)2Cx252(x1)2Dx2102(x1)23、如图,在RtACB和RtDCE中,ACBC2,CDCE,CBD15,连接AE,BD交于点F,则BF的长为()ABCD4、已知点是平分线上的一点,且,作于点,点是射

    3、线上的一个动点,若,则的最小值为()A2B3C4D55、如图,在ABC中,AB2,ABC60,ACB45,D是BC的中点,直线l经过点D,AEl,BFl,垂足分别为E,F,则AE+BF的最大值为()AB2C2D36、如图,矩形中,的平分线交于点E,垂足为F,连接下列结论:;若,则其中正确的结论有()A2个B3个C4个D5个7、如图所示的网格是正方形网格,A,B,C,D是网格线交点,则与的大小关系为()ABCD无法确定8、如图,以RtABC的两直角边为边向外作正方形,其面积分别为S1,S2,若S18cm2,S217cm2,则斜边AB的长是()A3cmB6cmC4cmD5cm9、如图,在由边长为1

    4、的7个正六边形组成的网格中,点A,B在格点上若再选择一个格点C,使ABC是直角三角形,且每个直角三角形边长均大于1,则符合条件的格点C的个数是()A2B4C5D610、如图,在中,为边上一动点,于,于,为中点,则的最小值为().ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、九章算术是我国古代最重要的数学著作之一,在勾股章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折着高几何?”翻译成数学问题是:如图所示,在ABC中,ACB=90, AC+AB=10, BC=3,求AC的长,若设AC=x, 则可列方程为_2、九章算术中有一道“引葭赴岸”问

    5、题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐问水深,葭长各几何?”题意是:有一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B(如图)则芦苇长_尺3、在继承和发扬红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离有5米则旗杆的高度_4、如图,已知,那么数轴上点所表示的数是_5、公元三世纪,我国汉代数学家赵爽在注解周髀算经时给出的“赵爽弦图”,它由四个全

    6、等的直角三角形与中间的小正方形拼成的一个大正方形,如果小正方形面积是49,直角三角形中较小锐角的正切为,那么大正方形的面积是_三、解答题(5小题,每小题10分,共计50分)1、台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向由行驶向,已知点为海港,并且点与直线上的两点,的距离分别为,又,以台风中心为圆心周围250km以内为受影响区域(1)求的度数;(2)海港受台风影响吗?为什么?2、如图,在四边形中,于,(1)求证:;(2)若,求四边形的面积3、如图,AD是ABC的中线,DEAC于点E,DF是ABD的中线,且CE=2,DE=

    7、4,AE=8(1)求证:;(2)求DF的长4、有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?5、某海上有一小岛,为了测量小岛两端A,B的距离,测量人员设计了一种测量方法,如图,已知B是CD的中点,E是BA延长线上的一点,且CED90,测得AE16.6海里,DE60海里,CE80海里(1)求小岛两端A,B的距离(2)过点C作CFAB交AB的延长线于点F,求值-参考答案-一、单选题1、D【解析】【分析】根据勾股定理的逆定理,看较小的两边的平方和

    8、是否等于最大的边的平方即可进行判断.【详解】A、42+7282,故不能构成直角三角形;B、22+2222,故不能构成直角三角形;C、2+2=4,故不能构成三角形,不能构成直角三角形;D、52+122=132,故能构成直角三角形,故选D【考点】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形2、C【解析】【分析】首先设芦苇长x尺,则水深为(x1)尺,根据勾股定理可得方程(x1)252x2【详解】解:设芦苇长x尺,由题意得:(x1)252x2,即x252(x1)2故选:C【考点】此题主要考查了勾股定理的应用,解题的关键是读懂题意,从题中抽

    9、象出勾股定理这一数学模型3、B【解析】【分析】由已知证得,进而确定三个内角的大小,求得,进而可得到答案【详解】解: 又 在等腰直角三角形中 故选:B【考点】本题考查全等三角形的判定和性质,勾股定理;熟练掌握相关知识是解题的关键4、B【解析】【分析】根据垂线段最短可得PNOA时,PN最短,再根据角平分线上的点到角的两边的距离相等可得PM=PN,再结合勾股定理求解即可【详解】解:当PNOA时,PN的值最小,OC平分AOB,PMOB,PM=PN,由勾股定理可知:PM=3,PN的最小值为3故选B【考点】本题考查了角平分线上的点到角的两边的距离相等的性质,垂线段最短的性质及勾股定理,熟记性质是解题的关键

    10、5、A【解析】【分析】把要求的最大值的两条线段经过平移后形成一条线段,然后再根据垂线段最短来进行计算即可【详解】解:如图,过点C作CKl于点K,过点A作AHBC于点H,在RtAHB中,ABC60,AB2,BH1,AH,在RtAHC中,ACB45,AC,点D为BC中点,BDCD,在BFD与CKD中,BFDCKD(AAS),BFCK,延长AE,过点C作CNAE于点N,可得AE+BFAE+CKAE+ENAN,在RtACN中,ANAC,当直线lAC时,最大值为,综上所述,AE+BF的最大值为故选:A【考点】本题主要考查了全等三角形的判定定理和性质定理及平移的性质,构建全等三角形是解答此题的关键6、D【

    11、解析】【分析】根据AE平分DAE,可得, 从而得到AB=BE,进而得到,可得正确;然后证明ABEAFD,可得AB=BE=AF=FD,从而得到AED=CED,故正确;再证得DEFDEC,可得正确;再根据ABFDCF,可得BF=CF,故正确;过点F作FGBC于点G,可得,从而得到,进而得到,可得正确;即可求解【详解】解:在矩形中,BAD=ADC=ABC=90,AD=BC,ADBC,AE平分DAE,ADBC,DAE=AEB=45,AEB=BAE=45,AB=BE,AE=AD,故正确;在ABE和AFD中,BAE=DAE,ABE=AFD,AE=AD,ABEAFD(AAS),BE=DF,AB=BE=AF=

    12、FD,AED=CED,故正确;DAE=45,DFAE,ADF=45,CDF=45,EDF=ADE-ADF=22.5,CDE=FDE=22.5,AEB=45,AED=67.5,CED=67.5,AED=CED,DE=DE,DEFDEC,DF=CD,DECF,故正确;AB=CD,BAE=CDF=45,AF=DF,ABFDCF,BF=CF,故正确;如图,过点F作FGBC于点G,FGAB,EFG=BAE=45,EFG=FEG,FG=GE,DEFDEC,CE=EF,BF=CF,BG=CG,AB=1,解得:,故正确;正确的有5个故选:D【考点】本题主要考查了矩形的性质,全等三角形的判定和性质,等腰直角三角

    13、形的判定和性质,勾股定理等知识,熟练掌握相关知识点是解题的关键7、C【解析】【分析】根据每个小网格都为正方形,设每个网格为1,由勾股定理可以求出AD、AC、 CD的长,再由勾股定理的逆定理得到ACD为等腰直角三角形,同理可得ABC为等腰直角三角形,即BAC= DAC【详解】解:如图,设正方形每个网格的边长都为1,连接CD、BC,则,为等腰直角三角形,同理:,为等腰直角三角形,故选:C【考点】本题考查勾股定理的性质、勾股定理的逆定理以及等腰直角三角形的判定,解本题的关键要掌握勾股定理及逆定理的基本知识8、D【解析】【分析】根据正方形的面积可以得到BC28,AC217,然后根据勾股定理即可得到AB

    14、2,从而可以求得AB的值【详解】解:S18cm2,S217cm2,BC28,AC217,ACB90,AB2BC2AC2,即AB281725,AB5cm,故选:D【考点】本题考查正方形的面积、勾股定理,解答本题的关键是明确正方形的面积是边长的平方9、D【解析】【分析】分三种情况讨论,当A=90,或B=90,或C=90时,分别画出符合条件的图形,即可解答【详解】解:分三种情况讨论,当A=90,或B=90,或C=90如图 符合条件的格点C的个数是6个故选:D【考点】本题考查正多边形和圆的性质、直角三角形的判定与性质、直径所对的圆周角是90等知识,是基础考点,掌握相关知识是解题关键10、D【解析】【分

    15、析】先根据矩形的判定得出AEPF是矩形,再根据矩形的性质得出EF,AP互相平分,且EF=AP,再根据垂线段最短的性质就可以得出APBC时,AP的值最小,即AM的值最小,根据面积关系建立等式求出其解即可【详解】解:如图,连接AP,AB=3,AC=4,BC=5,EAF=90,PEAB于E,PFAC于F,四边形AEPF是矩形,EF,AP互相平分且EF=AP,EF,AP的交点就是M点当AP的值最小时,AM的值就最小,当APBC时,AP的值最小,即AM的值最小APBC=ABAC,APBC=ABAC,AB=3,AC=4,BC=5,5AP=34,AP=,AM=故选:D【考点】本题考查了矩形的性质的运用,勾股

    16、定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,解题的关键是求出AP的最小值二、填空题1、【解析】【分析】设AC=x,则AB=10-x,再由即可列出方程【详解】解:,且,在RtABC中,由勾股定理有:,即:,故可列出的方程为:,故答案为:【考点】本题考查了勾股定理的应用,熟练掌握勾股定理是解决本题的关键2、13【解析】【分析】将其转化为数学几何图形,如图所示,根据题意,可知BC5尺,设水深ACx尺,则芦苇长(x+1)尺,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长和水深【详解】解:设水深x尺,则芦苇长(x+1)尺,在RtCAB中,AC2+BC2AB2,即x2+52(x+1)

    17、2,解得:x12,x+113,故芦苇长13尺,故答案为:13【考点】本题考查勾股定理,和列方程解决实际问题,能够在实际问题中找到直角三角形并应用勾股定理是解决本题的关键3、12米【解析】【分析】设旗杆的高度是x米,绳子长为(x+1)米,旗杆,拉直的绳子和BC构成直角三角形,根据勾股定理可求出x的值,从而求出旗杆的高度【详解】解:设旗杆的高度为米,根据题意可得:,解得:,答:旗杆的高度为12米故答案为:12米【考点】本题考查勾股定理的应用,关键看到旗杆,拉直的绳子和BC构成直角三角形,根据勾股定理可求解4、【解析】【分析】首先根据勾股定理得:OB=即OA=又点A在数轴的负半轴上,则点A对应的数是

    18、-【详解】解:由图可知,OC=2,作BCOC,垂足为C,取BC=1,故,A在x的负半轴上,数轴上点A所表示的数是-故答案为:-【考点】此题主要考查了实数与数轴,勾股富士蝗应用,熟练运用勾股定理,同时注意根据点的位置以确定数的符号5、169【解析】【分析】由题意知小正方形的边长为7设直角三角形中较小边长为a,较长的边为b,运用正切函数定义求解【详解】解:由题意知,小正方形的边长为7,设直角三角形中较小边长为a,较长的边为b,则tan短边:长边a:b5:12所以ba,又以为ba+7,联立,得a5,b12所以大正方形的面积是:a2+b225+144169故答案是:169【考点】本题主要考查了解直角三

    19、角形、勾股定理的证明和正方形的面积,掌握解直角三角形、勾股定理的证明和正方形的面积是解题的关键.三、解答题1、(1)90;(2)受台风影响,理由见解析【解析】【分析】(1)利用勾股定理的逆定理得出ABC是直角三角形,进而得出ACB的度数;(2)利用三角形面积得出CD的长,进而得出海港C是否受台风影响【详解】解:(1)AC=300km,BC=400km,AB=500km,AC2+BC2=AB2,ABC是直角三角形,ACB=90;(2)海港C受台风影响,理由:过点C作CDAB,ABC是直角三角形,ACBC=CDAB,300400=500CD,CD=240(km),以台风中心为圆心周围250km以内

    20、为受影响区域,海港C受台风影响【考点】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答2、(1)详见解析;(2)S四边形ABCD=56【解析】【分析】(1)由等角的余角相等可得DAC=ABE,再根据题意可得RtBAERtADC,即可证;(2)根据勾股定理算出AC,由全等可得BE=AC,再算出ACD的面积和ABC的面积相加即可【详解】解:(1)BEAC,ABE+BAE=90,BAD=90,BAE+DAC=90,DAC=ABE,又AB=AD,BEA=ACD,RtBAERtADC(AAS),BE=AC(2)AB=AD=10,CD=6,ACD=90,Rt

    21、BAERtADC,BE=AC=8,【考点】本题考查三角形全等的判定和性质,三角形面积,关键在于牢记基础知识并灵活使用3、 (1)见解析(2)DF的长为5【解析】【分析】(1)利用勾股定理的逆定理,证明ADC是直角三角形,即可得出ADC是直角;(2)根据三角形的中线的定义以及直角三角形的性质解答即可(1)证明:DEAC于点E,AED=CED=90,在RtADE中,AED=90,AD2=AE2+DE2=82+42=80,同理:CD2=20,AD2+CD2=80+20=100,AC=AE+CE=8+2=10,AC2=100,AD2+CD2=AC2,ADC是直角三角形,ADC=90;(2)解:AD是A

    22、BC的中线,ADC=90,AD垂直平分BC,AB=AC=10,在RtADB中,ADB=90,点F是边AB的中点,DF=AB=5DF的长为5【考点】本题主要考查了直角三角形的性质与判定,垂直平分线的判定和的性质,熟记勾股定理与逆定理是解答本题的关键4、它至少需要5.2s才能赶回巢中【解析】【分析】根据题意,构建直角三角形,利用勾股定理解答【详解】解:如图,由题意知AB=3,CD=14-1=13,BD=24过A作AECD于E则CE=13-3=10,AE=24,在RtAEC中,5、 (1)33.4海里(2)【解析】【分析】(1)利用勾股定理求出CD,再根据斜边的中线等于斜边的一半求出BE,则AB可求;(2)设BFx海里利用勾股定理先表示出CF2,在RtCFE中,CFE90,利用勾股定理有CF2EF2CE2,即,解方程即可得解(1)在DCE中,CED90,DE60海里,CE80海里,由勾股定理可得(海里),B是CD的中点,(海里),ABBEAE5016.633.4(海里)答:小岛两端A、B的距离是33.4海里;(2)设BFx海里在RtCFB中,CFB90,CF2CB2BF2502x22500x2,在RtCFE中,CFE90,CF2EF2CE2,即,解得x14,答:值为【考点】本题主要考查了勾股定理的实际应用的知识,在直角三角形中灵活利用勾股定理是解答本题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年北师大版八年级数学上册第一章勾股定理综合测评试卷(解析版含答案).docx
    链接地址:https://www.ketangku.com/wenku/file-637557.html
    相关资源 更多
  • 北师大版七年级上册2.1有理数及其分类(教案).docx北师大版七年级上册2.1有理数及其分类(教案).docx
  • 北师大版七年级上册2.12用计算器进行计算 同步练习(含答案).docx北师大版七年级上册2.12用计算器进行计算 同步练习(含答案).docx
  • 北师大版七年级上册2.11有理数的混合运算(导学练 课时练).docx北师大版七年级上册2.11有理数的混合运算(导学练 课时练).docx
  • 北师大版七年级上册2.10科学计数法(导学练 课时练 ).docx北师大版七年级上册2.10科学计数法(导学练 课时练 ).docx
  • 北师大版七年级上册1.2展开与折叠 学案(无答案).docx北师大版七年级上册1.2展开与折叠 学案(无答案).docx
  • 北师大版七年级上册 第四章 基本平面图形 同步练习(无答案).docx北师大版七年级上册 第四章 基本平面图形 同步练习(无答案).docx
  • 北师大版七年级上册 第五章 一元一次方程应用水箱变高了 讲义(无答案).docx北师大版七年级上册 第五章 一元一次方程应用水箱变高了 讲义(无答案).docx
  • 北师大版七年级上册 第二章有理数及其运算2.11 有理数的混合运算 学案.docx北师大版七年级上册 第二章有理数及其运算2.11 有理数的混合运算 学案.docx
  • 北师大版七年级上册 6.2普查和抽样调查导学案无答案.docx北师大版七年级上册 6.2普查和抽样调查导学案无答案.docx
  • 北师大版七年级上册 5.2呼吸作用 (5份打包).docx北师大版七年级上册 5.2呼吸作用 (5份打包).docx
  • 北师大版七年级上册 5.1认识一元一次方程 (2) 同步练习.docx北师大版七年级上册 5.1认识一元一次方程 (2) 同步练习.docx
  • 北师大版七年级上册 5.1认识一元一次方程 (2) 同步练习.docx北师大版七年级上册 5.1认识一元一次方程 (2) 同步练习.docx
  • 北师大版七年级上册 3.4整式的加减 同步练习.docx北师大版七年级上册 3.4整式的加减 同步练习.docx
  • 北师大版七年级上册 3.2 列代数式专题练习(含答案).docx北师大版七年级上册 3.2 列代数式专题练习(含答案).docx
  • 北师大版七年级上册 2.4 有理数的加法 学案无答案.docx北师大版七年级上册 2.4 有理数的加法 学案无答案.docx
  • 北师大版七年级上册 2.1 有理数 学案.docx北师大版七年级上册 2.1 有理数 学案.docx
  • 北师大版七年级上册 1.1生活中的立体图形 学案无(无答案).docx北师大版七年级上册 1.1生活中的立体图形 学案无(无答案).docx
  • 北师大版七年级上册5.5应用一元一次方程希望工程义演(含答案).docx北师大版七年级上册5.5应用一元一次方程希望工程义演(含答案).docx
  • 北师大版七年级上册5.4应用一元一次方程打折销售同步练习(含答案).docx北师大版七年级上册5.4应用一元一次方程打折销售同步练习(含答案).docx
  • 北师大版七年级上册3.3整式 课件.docx北师大版七年级上册3.3整式 课件.docx
  • 北师大版七年级上册3.3整式 .docx北师大版七年级上册3.3整式 .docx
  • 北师大版七年级上册 3.2 列代数式专题练习(含答案).docx北师大版七年级上册 3.2 列代数式专题练习(含答案).docx
  • 北师大版七年级上4-2《比较线段的长短》课件(3课件打包).docx北师大版七年级上4-2《比较线段的长短》课件(3课件打包).docx
  • 北师大版七年级上 5.1.1认识一元一次方程同步练习.docx北师大版七年级上 5.1.1认识一元一次方程同步练习.docx
  • 北师大版七年级 数学上册同步练习第五章 一元一次方程 本章复习.docx北师大版七年级 数学上册同步练习第五章 一元一次方程 本章复习.docx
  • 北师大版七年级 数学上册同步练习第五章第3节 应用一元一次方程水箱变高了.docx北师大版七年级 数学上册同步练习第五章第3节 应用一元一次方程水箱变高了.docx
  • 北师大版七年级 数学上册同步练习第五章 第6节 应用一元一次方程追赶小明.docx北师大版七年级 数学上册同步练习第五章 第6节 应用一元一次方程追赶小明.docx
  • 北师大版七年级 数学上册同步练习第五章第4节 应用一元一次方程打折销售.docx北师大版七年级 数学上册同步练习第五章第4节 应用一元一次方程打折销售.docx
  • 北师大版七年级 数学上册同步练习第五章第3节 应用一元一次方程水箱变高了.docx北师大版七年级 数学上册同步练习第五章第3节 应用一元一次方程水箱变高了.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1