2022-2023学年北师大版八年级数学上册第一章勾股定理综合测评试卷(解析版含答案).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 北师大 八年 级数 上册 第一章 勾股定理 综合 测评 试卷 解析 答案
- 资源描述:
-
1、北师大版八年级数学上册第一章勾股定理综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组数据为三角形的三边,能构成直角三角形的是()A4,8,7B2,2,2C2,2,4D13,12,52、九章
2、算术是我国古代数学名著,记载着这样一个问题:“今有池方一丈,葭生其中央,出水一尺引葭赴岸,适与岸齐问水深、葭长各几何?”大意是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面水的深度与这根芦苇的长度分别是多少?设芦苇的长度为x尺,则可列方程为()Ax2+52(x+1)2Bx2+102(x+1)2Cx252(x1)2Dx2102(x1)23、如图,在RtACB和RtDCE中,ACBC2,CDCE,CBD15,连接AE,BD交于点F,则BF的长为()ABCD4、已知点是平分线上的一点,且,作于点,点是射
3、线上的一个动点,若,则的最小值为()A2B3C4D55、如图,在ABC中,AB2,ABC60,ACB45,D是BC的中点,直线l经过点D,AEl,BFl,垂足分别为E,F,则AE+BF的最大值为()AB2C2D36、如图,矩形中,的平分线交于点E,垂足为F,连接下列结论:;若,则其中正确的结论有()A2个B3个C4个D5个7、如图所示的网格是正方形网格,A,B,C,D是网格线交点,则与的大小关系为()ABCD无法确定8、如图,以RtABC的两直角边为边向外作正方形,其面积分别为S1,S2,若S18cm2,S217cm2,则斜边AB的长是()A3cmB6cmC4cmD5cm9、如图,在由边长为1
4、的7个正六边形组成的网格中,点A,B在格点上若再选择一个格点C,使ABC是直角三角形,且每个直角三角形边长均大于1,则符合条件的格点C的个数是()A2B4C5D610、如图,在中,为边上一动点,于,于,为中点,则的最小值为().ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、九章算术是我国古代最重要的数学著作之一,在勾股章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折着高几何?”翻译成数学问题是:如图所示,在ABC中,ACB=90, AC+AB=10, BC=3,求AC的长,若设AC=x, 则可列方程为_2、九章算术中有一道“引葭赴岸”问
5、题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐问水深,葭长各几何?”题意是:有一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B(如图)则芦苇长_尺3、在继承和发扬红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离有5米则旗杆的高度_4、如图,已知,那么数轴上点所表示的数是_5、公元三世纪,我国汉代数学家赵爽在注解周髀算经时给出的“赵爽弦图”,它由四个全
6、等的直角三角形与中间的小正方形拼成的一个大正方形,如果小正方形面积是49,直角三角形中较小锐角的正切为,那么大正方形的面积是_三、解答题(5小题,每小题10分,共计50分)1、台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向由行驶向,已知点为海港,并且点与直线上的两点,的距离分别为,又,以台风中心为圆心周围250km以内为受影响区域(1)求的度数;(2)海港受台风影响吗?为什么?2、如图,在四边形中,于,(1)求证:;(2)若,求四边形的面积3、如图,AD是ABC的中线,DEAC于点E,DF是ABD的中线,且CE=2,DE=
7、4,AE=8(1)求证:;(2)求DF的长4、有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?5、某海上有一小岛,为了测量小岛两端A,B的距离,测量人员设计了一种测量方法,如图,已知B是CD的中点,E是BA延长线上的一点,且CED90,测得AE16.6海里,DE60海里,CE80海里(1)求小岛两端A,B的距离(2)过点C作CFAB交AB的延长线于点F,求值-参考答案-一、单选题1、D【解析】【分析】根据勾股定理的逆定理,看较小的两边的平方和
8、是否等于最大的边的平方即可进行判断.【详解】A、42+7282,故不能构成直角三角形;B、22+2222,故不能构成直角三角形;C、2+2=4,故不能构成三角形,不能构成直角三角形;D、52+122=132,故能构成直角三角形,故选D【考点】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形2、C【解析】【分析】首先设芦苇长x尺,则水深为(x1)尺,根据勾股定理可得方程(x1)252x2【详解】解:设芦苇长x尺,由题意得:(x1)252x2,即x252(x1)2故选:C【考点】此题主要考查了勾股定理的应用,解题的关键是读懂题意,从题中抽
9、象出勾股定理这一数学模型3、B【解析】【分析】由已知证得,进而确定三个内角的大小,求得,进而可得到答案【详解】解: 又 在等腰直角三角形中 故选:B【考点】本题考查全等三角形的判定和性质,勾股定理;熟练掌握相关知识是解题的关键4、B【解析】【分析】根据垂线段最短可得PNOA时,PN最短,再根据角平分线上的点到角的两边的距离相等可得PM=PN,再结合勾股定理求解即可【详解】解:当PNOA时,PN的值最小,OC平分AOB,PMOB,PM=PN,由勾股定理可知:PM=3,PN的最小值为3故选B【考点】本题考查了角平分线上的点到角的两边的距离相等的性质,垂线段最短的性质及勾股定理,熟记性质是解题的关键
10、5、A【解析】【分析】把要求的最大值的两条线段经过平移后形成一条线段,然后再根据垂线段最短来进行计算即可【详解】解:如图,过点C作CKl于点K,过点A作AHBC于点H,在RtAHB中,ABC60,AB2,BH1,AH,在RtAHC中,ACB45,AC,点D为BC中点,BDCD,在BFD与CKD中,BFDCKD(AAS),BFCK,延长AE,过点C作CNAE于点N,可得AE+BFAE+CKAE+ENAN,在RtACN中,ANAC,当直线lAC时,最大值为,综上所述,AE+BF的最大值为故选:A【考点】本题主要考查了全等三角形的判定定理和性质定理及平移的性质,构建全等三角形是解答此题的关键6、D【
11、解析】【分析】根据AE平分DAE,可得, 从而得到AB=BE,进而得到,可得正确;然后证明ABEAFD,可得AB=BE=AF=FD,从而得到AED=CED,故正确;再证得DEFDEC,可得正确;再根据ABFDCF,可得BF=CF,故正确;过点F作FGBC于点G,可得,从而得到,进而得到,可得正确;即可求解【详解】解:在矩形中,BAD=ADC=ABC=90,AD=BC,ADBC,AE平分DAE,ADBC,DAE=AEB=45,AEB=BAE=45,AB=BE,AE=AD,故正确;在ABE和AFD中,BAE=DAE,ABE=AFD,AE=AD,ABEAFD(AAS),BE=DF,AB=BE=AF=
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-637557.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
