2022-2023学年度人教版九年级数学上册第二十三章旋转同步练习练习题(含答案详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 度人 九年级 数学 上册 第二十三 旋转 同步 练习 练习题 答案 详解
- 资源描述:
-
1、人教版九年级数学上册第二十三章旋转同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知两点,若,则点与()A关于y轴对称B关于x轴对称C关于原点对称D以上均不对2、如图,在小正三角形组成的网格中,
2、已有个小正三角形涂黑,还需涂黑个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则的最小值为()ABCD3、下列几何图形中,是轴对称图形但不是中心对称图形的是()A梯形B等边三角形C平行四边形D矩形4、如图,已知是等边三角形,边长为,将绕点逆时针旋转后点的对应点的坐标是()ABCD5、将按如图方式放在平面直角坐标系中,其中,顶点的坐标为,将绕原点逆时针旋转,每次旋转60,则第2023次旋转结束时,点对应点的坐标为()ABCD6、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接则在点M运动过程中,线段长度的最小值是()AB1C2
3、D7、如图,OAB中,AOB=60,OA=4,点B的坐标为(6,0),将OAB绕点A逆时针旋转得到CAD,当点O的对应点C落在OB上时,点D的坐标为()A(7,3)B(7,5)C(5,5)D(5,3)8、图,在中,将绕顶点顺时针旋转到,当首次经过顶点时,旋转角()A30B40C45D609、如图,在中,将绕点逆时针旋转到的位置,使得,则的度数是()ABCD10、下列运动形式属于旋转的是()A在空中上升的氢气球B飞驰的火车C时钟上钟摆的摆动D运动员掷出的标枪第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将等边绕顶点A顺时针方向旋转,使边AB与AC重合得,的中点E的
4、对应点为F,则的度数是_2、如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是_(结果用含、代数式表示).3、如图,在菱形OBCD中,OB1,相邻两内角之比为1:2,将菱形OBCD绕顶点O顺时针旋转90,得到菱形OBCD视为一次旋转,则菱形旋转45次后点C的坐标为_4、在平面直角坐标系中,直角如图放置,点A的坐标为,每一次将绕点O逆时针旋转90,第一次旋转后得到,第二次旋转后得到,依次类推,则点的坐标为_5、已知点A(2,b)与点B(a,3)关于原点对称,则ab =_三
5、、解答题(5小题,每小题10分,共计50分)1、如图,已知ABC中,AB=AC,把ABC绕A点沿顺时针方向旋转得到ADE,连接BD、CE交于点F(1)求证:;(2)若AB=2,当四边形ADFC是菱形时,求BF的长2、如图,在中,ACB90,ACBC点D是BC延长线上一点,连接AD将线段AD绕点A逆时针旋转90,得到线段AE过点E作,交AB于点F(1)直接写出AFE的度数是_;求证:DACE;(2)用等式表示线段AF与DC的数量关系,并证明3、如图,D 是 的边 延长线上一点,连接 ,把 绕点 顺时针旋转 60恰好得到 ,其中,是对应点,若 ,求 的度数4、在RtABC中,ACB90,AC2,A
6、BC30,点A关于直线BC的对称点为A,连接AB,点P为直线BC上的动点(不与点B重合),连接AP,将线段AP绕点P逆时针旋转60,得到线段PD,连接AD,BD【问题发现】(1)如图1,当点D在直线BC上时,线段BP与AD的数量关系为,DAB;【拓展探究】(2)如图2,当点P在BC的延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;【问题解决】(3)当BDA30时,求线段AP的长度5、小明在一次数学活动中,进行了如下的探究活动:如图,在矩形ABCD中,AB=8,AD=6,以点B为中心,顺时针旋转矩形ABCD,得到矩形BEFG,点A、D、C的对应点分别为E、F、G(1)
7、如图1,当点E落在CD边上时,求DE的长;(2)如图2,当点E落在线段DF上时,BE与CD交于点H求证:ABDEBD;求DH的长(3)如图3,若矩形ABCD对角线ACBD相交于点P,连接PE、PF,记PEF面积为S,请直接写出S的最值-参考答案-一、单选题1、C【解析】【分析】首先利用等式求出 然后可以根据横纵坐标的关系得出结果【详解】, 两点,点与关于原点对称,故选:C【考点】本题主要考查平面直角坐标系中关于原点对称的点,属于基础题,利用等式找到点与横纵坐标的关系是解题关键2、C【解析】【分析】由等边三角形有三条对称轴可得答案【详解】如图所示,n的最小值为3故选C【考点】本题考查了利用轴对称
8、设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质3、B【解析】【分析】根据轴对称图形和中心对称图形的定义以及性质对各项进行分析即可【详解】A、梯形不是轴对称图形,也不是中心对称图形,故本选项说法错误;B、等边三角形是轴对称图形,但不是中心对称图形,故本选项说法正确;C、平行四边形不是轴对称图形,是中心对称图形,故本选项说法错误;D、矩形是轴对称图形,也是中心对称图形,故本选项说法错误故选:B【考点】本题考查了轴对称图形和中心对称图形的判断,掌握轴对称图形和中心对称图形的定义以及性质是解题的关键4、B【解析】【分析】过点作于点过点作轴于点求出点的坐标,再利用全等三角形的性质求解【详解】
9、解:过点作于点,过点作轴于点 是等边三角形,在和中,故选:【考点】本题主要考查了等边三角形的判定与性质,旋转的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题5、A【解析】【分析】根据旋转性质,可知6次旋转为1个循环,故先需要求出前6次循环对应的A点坐标即可,利用全等三角形性质求出第一次旋转对应的A点坐标,之后第2次旋转,根据图形位置以及长,即可求出,第3、4、5次分别利用关于原点中心对称,即可求出,最后一次和A点重合,再判断第2023次属于循环中的第1次,最后即可得出答案【详解】解:由题意可知:6次旋转为1个循环,故只需要求出前6次循环对应的A点坐标即可第一次旋转时:过点作
10、轴的垂线,垂足为,如下图所示:由的坐标为可知:,在中, 由旋转性质可知:, , 在与中: , 此时点对应坐标为,当第二次旋转时,如下图所示:此时A点对应点的坐标为当第3次旋转时,第3次的点A对应点与A点中心对称,故坐标为当第4次旋转时,第4次的点A对应点与第1次旋转的A点对应点中心对称,故坐标为当第5次旋转时,第5次的点A对应点与第2次旋转的A点对应点中心对称,故坐标为第6次旋转时,与A点重合故前6次旋转,点A对应点的坐标分别为:、由于,故第2023次旋转时,A点的对应点为故选:A【考点】本题主要是考查了旋转性质、中心对称求点坐标、三角形全等以及点的坐标特征,熟练利用条件证明全等三角形,;通过
11、旋转和中心对称求解对应点坐标,是求解该题的关键6、A【解析】【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出HBN=MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明MBGNBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MGCH时最短,再根据BCH=30求解即可【详解】解:如图,取BC的中点G,连接MG,旋转角为60,MBH+HBN=60,又MBH+MBC=ABC=60,HBN=GBM,CH是等边ABC的对称轴,HB=AB,HB=BG,又MB旋转到BN,BM=BN,在MBG和NBH中,MBGNBH(SAS),MG=NH,根据垂线段最
12、短,MGCH时,MG最短,即HN最短,此时BCH=60=30,CG=AB=5=2.5,MG=CG=,HN=,故选A【考点】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点7、A【解析】【分析】如图,过点D作DEx轴于点E证明AOC是等边三角形,解直角三角形求出DE,CE,可得结论【详解】解:如图,过点D作DEx轴于点EB(6,0),OB=6,由旋转的性质可知AO=AC=4,OB=CD=6,ACD=AOB=60,AOC=60,AOC是等边三角形,OC=OA=4,ACO=60,DCE=60,CE=CD=3,DE=
13、3,OE=OC+CE=4+3=7,D(7,3),故选:A【考点】本题考查了旋转变换,含30度角的直角三角形的性质,勾股定理,等边三角形的判定和性质等知识,解题的关键是掌握旋转变换的性质8、B【解析】【分析】根据平行四边形的性质及旋转的性质可知,然后可得,则有,进而问题可求解【详解】解:四边形是平行四边形,由旋转的性质可得,;故选B【考点】本题主要考查平行四边形的性质与旋转的性质,熟练掌握平行四边形的性质与旋转的性质是解题的关键9、C【解析】【分析】根据旋转的性质得AC=AC,BAB=CAC,再根据等腰三角形的性质得ACC=ACC,然后根据平行线的性质由CCAB得ACC=CAB=70,则ACC=
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-641155.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
