分享
分享赚钱 收藏 举报 版权申诉 / 27

类型2022-2023学年度北师大版八年级数学上册第一章勾股定理重点解析试题(含答案解析).docx

  • 上传人:a****
  • 文档编号:643387
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:27
  • 大小:844.57KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年度 北师大 八年 级数 上册 第一章 勾股定理 重点 解析 试题 答案
    资源描述:

    1、北师大版八年级数学上册第一章勾股定理重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,矩形中,的平分线交于点E,垂足为F,连接下列结论:;若,则其中正确的结论有()A2个B3个C4个D5个2、

    2、如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A10mB15mC18mD20m3、如图,在RtABC中,ACB90, AB5,AC3,点D是BC上一动点,连接AD,将ACD沿AD折叠,点C落在点E处,连接DE交AB于点F,当DEB是直角时,DF的长为()A5B3CD4、一个直角三角形的两条直角边边长分别为6和8,则斜边上的高为()A4.5B4.6C4.8D55、如图,在中,两直角边,现将AC沿AD折叠,使点C落在斜边AB上的点E处,则CD长为()ABCD6、如图,在RtACB和RtDCE中,ACBC2,CDCE,CBD1

    3、5,连接AE,BD交于点F,则BF的长为()ABCD7、在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=()A4B5C6D78、如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底墙到左墙角的距离为1.5m,顶端距离地面2m,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面0.7m,那么小巷的宽度为()A3.2mB3.5mC3.9mD4m9、九章算术是我国古代数学名著,记载着这样一个问题:“今有池方一丈,葭生其中央,出水一尺引葭赴岸,适与岸齐问水深、葭长各几何?”大意是

    4、:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面水的深度与这根芦苇的长度分别是多少?设芦苇的长度为x尺,则可列方程为()Ax2+52(x+1)2Bx2+102(x+1)2Cx252(x1)2Dx2102(x1)210、如图,正方形的边长为10,连接,则线段的长为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在矩形中,垂足为点若,则的长为_2、图,在菱形ABCD中,是锐角,于点E,M是AB的中点,连接MD,若,则的值为_3、如图,该图形是由直角三角形和正方形

    5、构成,其中最大正方形的边长为7,则正方形A、B、C、D的面积之和为_4、如图,已知中,动点M满足,将线段绕点C顺时针旋转得到线段,连接,则的最小值为_5、如图,一个高,底面周长的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少为_长三、解答题(5小题,每小题10分,共计50分)1、如图,在一次地震中,一棵垂直于地面且高度为16米的大树被折断,树的顶部落在离树根8米处,即,求这棵树在离地面多高处被折断(即求AC的长度)?2、已知:整式A(n21)2+(2n)2,整式B0尝试化简整式A发现AB2求整式B联想:由上可知,B2(n21)2+(2n)2,当n1时

    6、,n21,2n,B为直角三角形的三边长,如图,填写下表中B的值;直角三角形三边n212nB勾股数组8勾股数组353、如图,点是内一点,把绕点顺时针旋转得到,且,.(1)判断的形状,并说明理由;(2)求的度数.4、如图,在ABC和DCE中,ACDE,BDCE90,点A,C,D依次在同一直线上,且ABDE(1)求证:ABCDCE;(2)连结AE,当BC5,AC12时,求AE的长5、如图所示的一块地,求这块地的面积-参考答案-一、单选题1、D【解析】【分析】根据AE平分DAE,可得, 从而得到AB=BE,进而得到,可得正确;然后证明ABEAFD,可得AB=BE=AF=FD,从而得到AED=CED,故

    7、正确;再证得DEFDEC,可得正确;再根据ABFDCF,可得BF=CF,故正确;过点F作FGBC于点G,可得,从而得到,进而得到,可得正确;即可求解【详解】解:在矩形中,BAD=ADC=ABC=90,AD=BC,ADBC,AE平分DAE,ADBC,DAE=AEB=45,AEB=BAE=45,AB=BE,AE=AD,故正确;在ABE和AFD中,BAE=DAE,ABE=AFD,AE=AD,ABEAFD(AAS),BE=DF,AB=BE=AF=FD,AED=CED,故正确;DAE=45,DFAE,ADF=45,CDF=45,EDF=ADE-ADF=22.5,CDE=FDE=22.5,AEB=45,A

    8、ED=67.5,CED=67.5,AED=CED,DE=DE,DEFDEC,DF=CD,DECF,故正确;AB=CD,BAE=CDF=45,AF=DF,ABFDCF,BF=CF,故正确;如图,过点F作FGBC于点G,FGAB,EFG=BAE=45,EFG=FEG,FG=GE,DEFDEC,CE=EF,BF=CF,BG=CG,AB=1,解得:,故正确;正确的有5个故选:D【考点】本题主要考查了矩形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理等知识,熟练掌握相关知识点是解题的关键2、C【解析】【详解】树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m,AB=12m

    9、,AC=13m,这棵树原来的高度=BC+AC=5+13=18m故选C3、C【解析】【分析】如图,由题意知,可知三点共线,与重合,在中,由勾股定理得,求的值,设,在中,由勾股定理得,计算求解即可【详解】解:如图,是直角由题意知,三点共线与重合在中,由勾股定理得设,在中,由勾股定理得即解得的长为故选C【考点】本题考查了折叠的性质,勾股定理等知识解题的关键在于明确三点共线,与重合4、C【解析】【分析】根据勾股定理求出斜边的长,再根据面积法求出斜边的高【详解】解:设斜边长为c,高为h由勾股定理可得: c2=62+82 ,则 c=10 ,直角三角形面积 S=68=ch ,可得 h=4.8 ,故选:C【考

    10、点】本题考查了勾股定理,利用勾股定理求直角三角形的边长和利用面积法求直角三角形的高是解决此类题的关键5、A【解析】【分析】先根据勾股定理求得AB的长,再根据折叠的性质求得AE,BE的长,从而利用勾股定理可求得CD的长【详解】解:AC6cm,BC8cm,C90,AB(cm),由折叠的性质得:AEAC6cm,AEDC90,BE10cm6cm4cm,BED90,设CDx,则BDBCCD8x,在RtDEB中,BE2DE2BD2,即42x2(8x)2,解得:x3,CD3cm,故选:A【考点】本题考查了折叠的性质,勾股定理等知识;熟记折叠性质并表示出RtDEB的三边,然后利用勾股定理列出方程是解题的关键6

    11、、B【解析】【分析】由已知证得,进而确定三个内角的大小,求得,进而可得到答案【详解】解: 又 在等腰直角三角形中 故选:B【考点】本题考查全等三角形的判定和性质,勾股定理;熟练掌握相关知识是解题的关键7、A【解析】【详解】解:由勾股定理的几何意义可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故选A【考点】勾股定理包含几何与数论两个方面,几何方面,一个直角三角形的斜边的平方等于另外两边的平方和这里,边的平方的几何意义就是以该边为边的正方形的面积8、C【解析】【分析】如图,在RtACB中,先根据勾股定理求出AB,然后在RtABD中根据勾股定理求出BD,进而可得答

    12、案【详解】解:如图,在RtACB中,ACB90,BC1.5米,AC2米,AB21.52+226.25,AB=2.5米,在RtABD中,ADB90,AD0.7米,BD2+AD2AB2,BD2+0.726.25,BD25.76,BD0,BD2.4米,CDBC+BD1.5+2.43.9米故选:C【考点】本题考查了勾股定理的应用,正确理解题意、熟练掌握勾股定理是解题的关键9、C【解析】【分析】首先设芦苇长x尺,则水深为(x1)尺,根据勾股定理可得方程(x1)252x2【详解】解:设芦苇长x尺,由题意得:(x1)252x2,即x252(x1)2故选:C【考点】此题主要考查了勾股定理的应用,解题的关键是读

    13、懂题意,从题中抽象出勾股定理这一数学模型10、B【解析】【分析】延长DH交AG于点E,利用SSS证出AGBCHD,然后利用ASA证出ADEDCH,根据全等三角形的性质求出EG、HE和HEG,最后利用勾股定理即可求出HG【详解】解:延长DH交AG于点E四边形ABCD为正方形AD=DC=BA=10,ADC=BAD=90在AGB和CHD中AGBCHDBAG=DCHBAGDAE=90DCHDAE=90CH2DH2=8262=100= DC2CHD为直角三角形,CHD=90DCHCDH=90DAE=CDH,CDHADE=90ADE=DCH在ADE和DCH中ADEDCHAE=DH=6,DE=CH=8,AE

    14、D=DHC=90EG=AGAE=2,HE= DEDH=2,GEH=180AED=90在RtGEH中,GH=故选B【考点】此题考查是正方形的性质、全等三角形的判定及性质和勾股定理,掌握正方形的性质、全等三角形的判定及性质和利用勾股定理解直角三角形是解决此题的关键二、填空题1、3【解析】【分析】在中,由正弦定义解得,再由勾股定理解得DE的长,根据同角的余角相等,得到,最后根据正弦定义解得CD的长即可解题【详解】解:在中,在矩形中,故答案为:3【考点】本题考查矩形的性质、正弦、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键2、【解析】【分析】延长DM交CB的延长线于点首先证明,设,利用

    15、勾股定理构建方程求出x即可解决问题【详解】延长DM交CB的延长线于点H,四边形ABCD是菱形,设,或舍弃,故答案为【考点】本题考查了菱形的性质、勾股定理、线段的垂直平分线的性质、全等三角形的判定和性质等知识,正确添加辅助线,构造全等三角形解决问题是解决本题的关键3、49【解析】【分析】根据正方形A,B,C,D的面积和等于最大的正方形的面积,求解即可求出答案【详解】如图对所给图形进行标注:因为所有的三角形都是直角三角形,所有的四边形都是正方形,所以正方形A的面积,正方形B的面积,正方形C的面积,正方形D的面积因为,所以正方形A,B,C,D的面积和故答案为:49【考点】本题主要考查了勾股定理、正方

    16、形的性质,面积的计算,掌握勾股定理是解本题的关键4、#【解析】【分析】证明AMCBNC,可得,再根据三角形三边关系得出当点N落在线段AB上时,最小,求出最小值即可【详解】解:线段绕点C顺时针旋转得到线段,AMCBNC,的最小值为;故答案为:【考点】本题考查了全等三角形的判定与性质,勾股定理,解题关键是证明三角形全等,得出,根据三角形三边关系取得最小值5、20m【解析】【分析】试题分析:要求登梯的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理【详解】将圆柱表面按一周半开展开呈长方形,圆柱高16m,底面周长8m,设螺旋形登梯长为xm,x2=(18+4)2

    17、+162=400, 登梯至少=20m故答案为:20m【考点】本题考查圆柱形侧面展开图新问题,涉及勾股定理,掌握按要求将圆柱侧面展开图形的方法,会利用圆周,高与对角线组成直角三角形,用勾股定理解决问题是关键三、解答题1、这棵树在离地面6米处被折断【解析】【分析】设,利用勾股定理列方程求解即可.【详解】解:设,在中,答:这棵树在离地面6米处被折断【考点】本题考查了勾股定理,熟练掌握勾股定理是解答本题的关键直角三角形两条直角边的平方和等于斜边的平方 当题目中出现直角三角形,且该直角三角形的一边为待求量时,常使用勾股定理进行求解有时也可以利用勾股定理列方程求解2、A(n2+1)2,Bn2+1,15,1

    18、7;12,37【解析】【分析】先根据整式的混合运算法则求出A,进而求出B,再把n的值代入即可解答【详解】A(n21)2+(2n)2n42n2+1+4n2n4+2n2+1(n2+1)2,AB2,B0,Bn2+1,当2n8时,n4,n2142115,n2+142+117;当n2135时,n6(负值舍去),2n2612,n2+137直角三角形三边n212nB勾股数组15817勾股数组351237故答案为:15,17;12,37【考点】本题考查了勾股数的定义及勾股定理的逆定理:已知ABC的三边满足a2+b2=c2,则ABC是直角三角形3、(1)是直角三角形,理由见解析;(2)150.【解析】【分析】(

    19、1)求出DE,CE,CD长,根据勾股逆定理可知的形状;(2)由等边三角形角的性质和全等三角形角的性质可知的度数【详解】解:(1)是直角三角形理由如下:绕点顺时针旋转得到,是等边三角形,又,是直角三角形.(2)由(1)得,是等边三角形,.【考点】本题是三角形综合题,主要考查了全等三角形的证明和性质、等边三角形的性质和判定、勾股逆定理,熟练应用等边三角形的性质求线段长及角度是解题的关键.4、(1)见解析;(2)13【解析】【分析】根据题意可知,本题考查平行的性质,全等三角形的判定和勾股定理,根据判定定理,运用两直线平行内错角相等再通过AAS以及勾股定理进行求解【详解】解:(1)在ABC和DCE中ABCDCE(2)由(1)可得BC=CE=5在直角三角形ACE中【考点】本题考查平行的性质,全等三角形的判定和勾股定理,熟练掌握判定定理运用以及平行的性质是解决此类问题的关键5、384【解析】【分析】连接,勾股定理求得,勾股定理的逆定理证明为直角三角形,进而根据三角形的面积公式计算和的面积之差即可【详解】解:连接,在直角中,由,解得,在中,为直角三角形,要求这块地的面积,求和的面积之差即可, ,答:这块地的面积为【考点】本题考查了勾股定理及其逆定理,掌握勾股定理和勾股定理的逆定理是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度北师大版八年级数学上册第一章勾股定理重点解析试题(含答案解析).docx
    链接地址:https://www.ketangku.com/wenku/file-643387.html
    相关资源 更多
  • 专题10推理篇——判断与推理(讲义)(原卷版).docx专题10推理篇——判断与推理(讲义)(原卷版).docx
  • 专题10截长补短模型综合应用(专项训练)(能力提升)(解析版).docx专题10截长补短模型综合应用(专项训练)(能力提升)(解析版).docx
  • 专题10截长补短模型综合应用(专项训练)(能力提升)(原卷版).docx专题10截长补短模型综合应用(专项训练)(能力提升)(原卷版).docx
  • 专题10定语从句(练习)(原卷版).docx专题10定语从句(练习)(原卷版).docx
  • 专题10天体运动(解析版).docx专题10天体运动(解析版).docx
  • 专题10天体运动(原卷版).docx专题10天体运动(原卷版).docx
  • 专题10压强(测试)(解析版).docx专题10压强(测试)(解析版).docx
  • 专题10压强(测试)(原卷版).docx专题10压强(测试)(原卷版).docx
  • 专题10功和机械能(原卷版).docx专题10功和机械能(原卷版).docx
  • 专题10功和机械能 (解析版).docx专题10功和机械能 (解析版).docx
  • 专题10函数综合应用 -【中职专用】中职高考数学二轮复习专项突破.docx专题10函数综合应用 -【中职专用】中职高考数学二轮复习专项突破.docx
  • 专题10函数的图象-2021年新高考数学基础考点一轮复习.docx专题10函数的图象-2021年新高考数学基础考点一轮复习.docx
  • 专题10二次函数交点综合应用(知识解读)-备战2023年中考数学《重难点解读•专项训练》(全国通用)(解析版).docx专题10二次函数交点综合应用(知识解读)-备战2023年中考数学《重难点解读•专项训练》(全国通用)(解析版).docx
  • 专题10二次函数交点综合应用(知识解读)-备战2023年中考数学《重难点解读•专项训练》(全国通用)(原卷版).docx专题10二次函数交点综合应用(知识解读)-备战2023年中考数学《重难点解读•专项训练》(全国通用)(原卷版).docx
  • 专题10二次函数交点综合应用(专项训练)(解析版).docx专题10二次函数交点综合应用(专项训练)(解析版).docx
  • 专题10二次函数交点综合应用(专项训练)(原卷版).docx专题10二次函数交点综合应用(专项训练)(原卷版).docx
  • 专题102020-2021年广东省中考英语考前必背书面表达50篇.docx专题102020-2021年广东省中考英语考前必背书面表达50篇.docx
  • 专题10 三角函数【多选题】(解析版).docx专题10 三角函数【多选题】(解析版).docx
  • 专题10 三角函数【多选题】(原卷版).docx专题10 三角函数【多选题】(原卷版).docx
  • 专题10 2022年中考英语易错题精讲精练-动词时态.docx专题10 2022年中考英语易错题精讲精练-动词时态.docx
  • 专题1.复分解反应与离子共存(讲义)-2022-2023学年九年级上册科学讲练课堂(浙教版).docx专题1.复分解反应与离子共存(讲义)-2022-2023学年九年级上册科学讲练课堂(浙教版).docx
  • 专题1.名词考点聚焦和精讲 (原卷版).docx专题1.名词考点聚焦和精讲 (原卷版).docx
  • 专题1.9 正方形的性质与判定(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx专题1.9 正方形的性质与判定(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx
  • 专题1.9 数轴(巩固篇)(专项练习)-2022-2023学年七年级数学上册基础知识专项讲练(人教版).docx专题1.9 数轴(巩固篇)(专项练习)-2022-2023学年七年级数学上册基础知识专项讲练(人教版).docx
  • 专题1.9 探索三角形全等的条件(ASAAAS)(直通中考)-2023-2024学年八年级数学上册基础知识专项突破讲与练(苏科版).docx专题1.9 探索三角形全等的条件(ASAAAS)(直通中考)-2023-2024学年八年级数学上册基础知识专项突破讲与练(苏科版).docx
  • 专题1.9 平行线中的折叠问题(分层练习)(基础练)-2023-2024学年七年级数学下册全章复习与专题突破讲与练(浙教版).docx专题1.9 平行线中的折叠问题(分层练习)(基础练)-2023-2024学年七年级数学下册全章复习与专题突破讲与练(浙教版).docx
  • 专题1.9 二次根式的加减(巩固篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx专题1.9 二次根式的加减(巩固篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx
  • 专题1.9 二次函数的图象与性质常考知识点分类专题(培优练)-2023-2024学年九年级数学上册全章复习与专题突破讲与练(浙教版).docx专题1.9 二次函数的图象与性质常考知识点分类专题(培优练)-2023-2024学年九年级数学上册全章复习与专题突破讲与练(浙教版).docx
  • 专题1.9 二次函数y=ax² k(a≠0)的图象与性质(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(浙教版).docx专题1.9 二次函数y=ax² k(a≠0)的图象与性质(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(浙教版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1