分享
分享赚钱 收藏 举报 版权申诉 / 25

类型2022-2023学年综合复习人教版数学八年级上册期中专项测评试题 A卷(含答案解析).docx

  • 上传人:a****
  • 文档编号:646789
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:25
  • 大小:555.36KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022-2023学年综合复习人教版数学八年级上册期中专项测评试题 A卷含答案解析 2022 2023 学年 综合 复习 人教版 数学 年级 上册 期中 专项 测评 试题 答案 解析
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中专项测评试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、正多边形通过镶嵌能够密铺成一个无缝隙的平面,下列组合中不能镶嵌成一个

    2、平面的是()A正三角形和正方形B正三角形和正六边形C正方形和正六边形D正方形和正八边形2、如图,中,D是外一点, ,则()ABCD3、如图,1、2、3中是ABC外角的是()A1、2B2、3C1、3D1、2、34、能说明“锐角,锐角的和是锐角”是假命题的例证图是()ABCD5、如图是作的作图痕迹,则此作图的已知条件是()A已知两边及夹角B已知三边C已知两角及夹边D已知两边及一边对角二、多选题(5小题,每小题4分,共计20分)1、如图,则下列结论正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 ABCD2、(多选)如图,在中,分别为边,上的点,平分,于点,为的中点,延长交于点,则下列判断

    3、中正确的结论有()A线段是的高B与面积相等CD3、用下列一种正多边形可以拼地板的是()A正三角形B正六边形C正八边形D正十二边形4、在自习课上,小红为了检测同学们的学习效果,提出如下四种说法,其中错误的说法是()A三角形有且只有一条中线B三角形的高一定在三角形内部C三角形的两边之差大于第三边D三角形按边分类可分为等腰三角形和不等边三角形5、若将一副三角板按如图所示的方式放置,则下列结论正确的是()A12B如果230,则有ACDEC如果230,则有BCADD如果230,必有4C第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,已知,是角平分线且,作的垂直平分线交于点F

    4、,作,则周长为_2、若长度分别为3,4,a的三条线段能组成一个三角形,则整数a的值可以是_(写出一个即可)3、如图,BE交AC于点M,交CF于点D,AB交CF于点N,给出的下列五个结论中正确结论的序号为 线 封 密 内 号学级年名姓 线 封 密 外 ;4、如图所示,过正五边形的顶点作一条射线与其内角的角平分线相交于点,且,则_度5、有一张直角三角形纸片,记作ABC,其中B=90按如图方式剪去它的一个角(虚线部分),在剩下的四边形ADEC中,若1=165,则2的度数为_四、解答题(5小题,每小题8分,共计40分)1、如图,点C、F在线段BE上,ABCDEF90,BCEF,请只添加一个合适的条件使

    5、ABCDEF(1)根据“ASA”,需添加的条件是;根据“HL”,需添加的条件是;(2)请从(1)中选择一种,加以证明2、在一个各内角都相等的多边形中,每一个内角都比相邻外角的倍还大(1)求这个多边形的边数;(2)若将这个多边形剪去一个角,剩下多边形的内角和是多少?3、如图,ABADBCDC,CDABEBAD90,点E、F分别在边BC、CD上,EAF45,过点A作GABFAD,且点G在CB的延长线上(1)GAB与FAD全等吗?为什么?(2)若DF2,BE3,求EF的长4、如图,点A,F,E,D在一条直线上,AFDE,CFBE,ABCD求证BECF 线 封 密 内 号学级年名姓 线 封 密 外 5

    6、、将一副三角尺叠放在一起:(1)如图,若142,请计算出CAE的度数;(2)如图,若ACE2BCD,请求出ACD的度数-参考答案-一、单选题1、C【解析】【分析】由正多边形的内角拼成一个周角进行判断,ax+by360(a、b表示多边形的一个内角度数,x、y表示多边形的个数)【详解】解:A、正三角形和正方形的内角分别为60、90,360+290360,正三角形和正方形可以镶嵌成一个平面,故A选项不符合题意;B、正三角形和正六边形的内角分别为60、120,260+2120360,或460+1120360,正三角形和正六边形可以镶嵌成一个平面,故B选项不符合题意;C、正方形和正六边形的内角分别为90

    7、、120,290+1120300360且390+1120390360,正方形和正六边形不能镶嵌成一个平面,故C选项符合题意;D、正方形和正八边形的内角分别为90、135,190+2135360,正方形和正八边形可以镶嵌成一个平面,故D选项不符合题意;故选:C【考点】本题主要考查了平面镶嵌,两种或两种以上几何图形向前成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角2、D【解析】【分析】设,则,由,即可求出【详解】设,则, 线 封 密 内 号学级年名姓 线 封 密 外 ,故选:D【考点】本题考查了三角形内角和定理的应用,解题关键是灵活运用相关知识进行求解3、C【解析】【分析】

    8、根据三角形外角的定义进行分析即可得到答案.【详解】解:属于ABC外角的有1、3共2个故选C【考点】本题考查三角形外角的定义,解题的关键是掌握三角形的定义.4、C【解析】【分析】先将每个图形补充成三角形,再利用三角形的外角性质逐项判断即得答案【详解】解:A、如图1,1是锐角,且1=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意; B、如图2,2是锐角,且2=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意;C、如图3,3是钝角,且3=,所以此图说明“锐角,锐角的和是锐角”是假命题,故本选项符合题意;D、如图4,4是锐角,且4=,所以此图说明“锐角,锐角的和是

    9、锐角”是真命题,故本选项不符合题意故选:C【考点】本题考查了真假命题、举反例说明一个命题是假命题以及三角形的外角性质等知识,属于基本题型,熟练掌握上述基本知识是解题的关键5、C【解析】【分析】观察的作图痕迹,可得此作图的条件.【详解】解:观察的作图痕迹,可得此作图的已知条件为:,及线段AB,故已知条件为:两角及夹边,故选C.【考点】本题主要考查三角形作图及三角形全等的相关知识.二、多选题1、ACD【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 先证出(AAS),得,等量代换得,故C正确;证出(ASA),得到EM=FN,故A正确;根据ASA证出,故D正确;若,则,但不一定为,故B

    10、错误;即可得出结果【详解】解:在和中,(AAS),故C选项说法正确,符合题意;在和中,(ASA),EM=FN,故A选项说法正确,符合题意;在和中,(ASA),故D选项说法正确,符合题意;若,则,但不一定为,故B选项说法错误,不符合题意;故选ACD【考点】本题考查了全等三角形的判定与性质,解题的关键是熟练掌握全等三角形的判定与性质2、BCD【解析】【分析】根据三角形的高线、中线的性质及全等三角形与三角形内角和定理依次进行判断即可得出结果【详解】解:CEAD,ACE的高是AF,不是AD,选项A不符合题意;G为AD中点,BG是ABD的中线,ABG与BDG面积相等, 线 封 密 内 号学级年名姓 线

    11、封 密 外 选项B符合题意;AD平分BAC,CEAD,EAF=CAF,AFE=AFC=90,在AFE与AFC中,AFEAFC,AE=AC,AEC=ACE,AB-AE=BE,AB-AC=BE,选项D符合题意;AEC=CBE+BCE,ACE=CBE+BCE,CAD+ACE=90,CAD+CBE+BCE=90,选项C符合题意,故选:BCD【考点】题目主要考查全等三角形的判定和性质,三角形内角和定理及三角形的基本性质,熟练掌握全等三角形与三角形的基本性质是解题关键3、AB【解析】【分析】分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可求出答案【详解】解:A、 正三边形的一个内角度数为18036

    12、,是360的约数,可以拼地板,符合题意; B、正六边形的每个内角是120,能整除360,可以拼地板符合题意; C. 正八边形的一个内角度数为(8-2)1808135,不是360的约数,不可以拼地板,不符合题意;D.正十二边形的一个内角度数为(12-2)18012150,不是360的约数,不可以拼地板,不符合题意;故选AB【考点】本题考查了平面镶嵌(拼地板),计算正多边形的内角能否整除360是解答此题的关键4、ABC【解析】【分析】三角形有三条中线对进行判断;钝角三角形三条高,有两条在三角形外部,对进行判断;根据三角形三边的关系对进行判断;根据三角形的分类对进行判断【详解】解:A三角形有3条中线

    13、,选项A的说法是错误的;B三角形的高不一定在三角形内部,选项B的说法是错误的;C三角形的两边之差小于第三边,选项C的说法是错误的;D三角形按边分类可分为等腰三角形和不等边三角形是正确的 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:ABC【考点】本题考查了三角形的有关概念,属于基础题型要注意等腰三角形与等边三角形两个概念的区别,掌握三角形有三条中线;钝角三角形三条高,有两条在三角形外部,三角形三边的关系;三角形的分类是解题关键5、BD【解析】【分析】根据两种三角形的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案【详解】解:CABDAE90,13,故A错

    14、误230,1360CAD90+60150, D+CAD180,ACDE,故B正确,230,1360, ,不平行, 故C错误,230,1360, 由三角形的内角和定理可得: 445,故D正确故选:B,D【考点】此题考查平行线的判断,三角形的内角和定理的应用,解题关键在于根据三角形的内角和来进行计算三、填空题1、【解析】【分析】知道和是角平分线,就可以求出,的垂直平分线交于点F可以得到AF=FD,在直角三角形中30所对的边等于斜边的一半,再求出DE,得到【详解】解: 的垂直平分线交于点F, (垂直平分线上的点到线段两端点距离相等) 线 封 密 内 号学级年名姓 线 封 密 外 ,是角平分线 , 【

    15、考点】此题考查角平分线的性质、直角三角形的性质、垂直平分线的性质的综合题,掌握运用三者的性质是解题的关键2、5(答案不唯一)【解析】【分析】根据三角形的任意两边之和大于第三边,任意两边之差小于第三边进行求解即可【详解】解:由题意知:43a4+3,即1a7,整数a可取2、3、4、5、6中的一个,故答案为:5(答案不唯一)【考点】本题考查三角形的三边关系,能根据三角形的三边关系求出第三边a的取值范围是解答的关键3、;【解析】【分析】先证明ABEACF,然后根据全等三角形的性质即可判定;利用全等三角形的性质即可判定;根据ASA即可证明三角形全等;无法证明该结论;根据ASA证明三角形全等即可【详解】解

    16、:在ABE和ACF中,ABEACF(AAS),BAE=CAF,BE=CF,故正确,BAE-BAC=CAF-BAC,即1=2,故正确,ABEACF,AB=AC,在CAN和BAM中,CANBAM(ASA),故正确,CD=DN不能证明成立,故错误在AFN和AEM中,AFNAEM(ASA),故正确 线 封 密 内 号学级年名姓 线 封 密 外 结论中正确结论的序号为;故答案为;【考点】本题主要考查了三角形全等的判定和性质,解题的关键是正确寻找全等三角形全等的条件4、66【解析】【分析】首先根据正五边形的性质得到度,然后根据角平分线的定义得到度,再利用三角形内角和定理得到的度数【详解】解:五边形为正五边

    17、形,度,是的角平分线,度,故答案为66【考点】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理5、105.【解析】【分析】根据三角形内角和定理结合B的度数即可得出BDE+BED的度数,再根据BDE与2互补、BED与1互补,即可求出1+2的度数,代入1=165即可得出结论【详解】B=90,BDE+BED=180-B=90,又BDE+2=180,BED+1=180,1+2=360-(BDE+BED)=2701=165,2=105故答案为:105【考点】本题考查了三角形内角和定理,根据三角形内角和定理求出BDE+BED的度数是解题的关键四、解答题1、(1)ACBDFE,AC

    18、DF;(2)选择添加条件ACDE,证明见解析【解析】【分析】(1)根据题意添加条件即可;(2)选择添加条件ACDE,根据“HL”证明即可【详解】 线 封 密 内 号学级年名姓 线 封 密 外 (1)根据“ASA”,需添加的条件是ACBDFE,根据“HL”,需添加的条件是ACDF,故答案为:ACBDFE,ACDF;(2)选择添加条件ACDE证明,证明:ABCDEF90,在RtABC和RtDEF中,RtABCRtDEF(HL)【考点】本题考查了全等三角形的判定,熟知全等三角形的判定定理是解题关键,证明三角形全等时注意条件的对应2、(1)9;(2)1080或1260或1440【解析】【分析】(1)设

    19、多边形的一个外角为,则与其相邻的内角等于,根据内角与其相邻的外角的和是 列出方程,求出的值,再由多边形的外角和为,求出此多边形的边数为;(2)剪掉一个角以后,多边形的边数可能增加了1条,也可能减少了1条,或者不变,根据多边形的内角和定理即可求出答案【详解】解:(1)设每一个外角为,则与其相邻的内角等于, ,即多边形的每个外角为,多边形的外角和为,多边形的外角个数为:,这个多边形的边数为;(2)因为剪掉一个角以后,多边形的边数可能增加了1条,也可能减少了1条,或者不变,若剪去一角后边数减少1条,即变成边形,内角和为,若剪去一角后边数不变,即变成边形,内角和为,若剪去一角后边数增加1,即变成边形,

    20、内角和为,将这个多边形剪去一个角后,剩下多边形的内角和为或或 【考点】本题考查了多边形的内角和定理,外角和定理,多边形内角与外角的关系,熟练掌握相关知识点是解题的关键3、(1)全等,理由详见解析;(2)5【解析】【分析】(1)由题意易得ABG90D,然后问题可求证;(2)由(1)及题意易得GAEFAE,GBDF,进而问题可求解【详解】解:(1)全等理由如下DABE90, 线 封 密 内 号学级年名姓 线 封 密 外 ABG90D,在ABG和ADF中,GABFAD(ASA);(2)BAD90,EAF45,DAF+BAE45,GABFAD,GABFAD,AGAF,GAB+BAE45,GAE45,G

    21、AEEAF,在GAE和FAE中,GAEFAE(SAS)EFGEGABFAD,GBDF,EFGEGB+BEFD+BE2+35【考点】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键4、证明见解析【解析】【分析】根据线段的和差关系可得AEDF,根据平行线的性质可得DA,CFDBEA,利用ASA可证明ABEDCF,根据全等三角形的性质即可得结论【详解】AFDE,AFEFDEEF,即AEDF,AB/CD,DA,CF/BE,CFDBEA,在ABEDCF中,ABEDCF,BECF【考点】本题考查平行线的性质及全等三角形的判定与性质,熟练掌握相关性质及判定定理是解题关键5、(1

    22、)CAE18;(2)ACD120【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 (1)由题意根据BAC90列出关于1、2的方程求解即可得到2的度数,再根据同角的余角相等求出CAE2,从而得解;(2)根据ACB和DCE的度数列出等式求出ACEBCD30,再结合已知条件求出BCD,然后由ACDACB+BCD并代入数据计算即可得解【详解】解:(1)BAC90,1+290,142,42+290,218,又DAE90,1+CAE2+190,CAE218;(2)ACE+BCE90,BCD+BCE60,ACEBCD30,又ACE2BCD,2BCDBCD30,BCD30,ACDACB+BCD90+30120【考点】本题考查三角形的外角性质,三角形的内角和定理,准确识图理清图中各角度之间的关系是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年综合复习人教版数学八年级上册期中专项测评试题 A卷(含答案解析).docx
    链接地址:https://www.ketangku.com/wenku/file-646789.html
    相关资源 更多
  • 专题10.4 二项式定理(原卷版).docx专题10.4 二项式定理(原卷版).docx
  • 专题10.3 两个计数原理、排列与组合(解析版).docx专题10.3 两个计数原理、排列与组合(解析版).docx
  • 专题10.3二项式定理及其应用(原卷版).docx专题10.3二项式定理及其应用(原卷版).docx
  • 专题10.2 统计案例(解析版).docx专题10.2 统计案例(解析版).docx
  • 专题10.2 统计案例(原卷版).docx专题10.2 统计案例(原卷版).docx
  • 专题10.2排列组合问题(解析版).docx专题10.2排列组合问题(解析版).docx
  • 专题10.10 统计与概率(2021-2023年)真题训练(解析版).docx专题10.10 统计与概率(2021-2023年)真题训练(解析版).docx
  • 专题10.1 分类加法计数原理与分步乘法计数原理(原卷版).docx专题10.1 分类加法计数原理与分步乘法计数原理(原卷版).docx
  • 专题10.1 分类加法计数原理与分步乘法计数原理(解析版).docx专题10.1 分类加法计数原理与分步乘法计数原理(解析版).docx
  • 专题10-定语从句-冲刺2023年高考每天100道语法小题限时狂练.docx专题10-定语从句-冲刺2023年高考每天100道语法小题限时狂练.docx
  • 专题10-书面表达常用词汇和高级词汇 -2023年高考英语真题分项功能词汇专项突破.docx专题10-书面表达常用词汇和高级词汇 -2023年高考英语真题分项功能词汇专项突破.docx
  • 专题10-19天晨读 晚练四步轻松掌握高考英语核心词汇词形转换.docx专题10-19天晨读 晚练四步轻松掌握高考英语核心词汇词形转换.docx
  • 专题10-12 新民主主义革命时期(好题过关)(原卷版).docx专题10-12 新民主主义革命时期(好题过关)(原卷版).docx
  • 专题10--《2021届高考英语阅读理解完型填空600高频单词20练(基础练 拔高练)》(10).docx专题10--《2021届高考英语阅读理解完型填空600高频单词20练(基础练 拔高练)》(10).docx
  • 专题10 阅读还原(杭州专用)-2023年中考英语逆袭冲刺(三年真题热门考点提炼 名校最新模拟速递)专训(浙江省专用).docx专题10 阅读还原(杭州专用)-2023年中考英语逆袭冲刺(三年真题热门考点提炼 名校最新模拟速递)专训(浙江省专用).docx
  • 专题10 阅读表达-8年(2014-2021)苏州中考英语真题分析.docx专题10 阅读表达-8年(2014-2021)苏州中考英语真题分析.docx
  • 专题10 阅读理解应用文(解析版).docx专题10 阅读理解应用文(解析版).docx
  • 专题10 阅读理解应用文(原卷版).docx专题10 阅读理解应用文(原卷版).docx
  • 专题10 阅读理解之说明文(名校最新期末真题)-2022-2023学年七年级英语下学期期末复习查缺补漏冲刺满分(牛津译林版).docx专题10 阅读理解之说明文(名校最新期末真题)-2022-2023学年七年级英语下学期期末复习查缺补漏冲刺满分(牛津译林版).docx
  • 专题10 阅读理解之说明文-2021年高考英语题型大冲关(上海专用).docx专题10 阅读理解之说明文-2021年高考英语题型大冲关(上海专用).docx
  • 专题10 阅读理解之应用文(名校最新期末真题)-2022-2023学年八年级英语下学期期末考点大串讲(牛津译林版).docx专题10 阅读理解之应用文(名校最新期末真题)-2022-2023学年八年级英语下学期期末考点大串讲(牛津译林版).docx
  • 专题10 阅读理解之应用文-2024年高考英语二轮热点题型归纳与变式演练(新高考通用)(解析版).docx专题10 阅读理解之应用文-2024年高考英语二轮热点题型归纳与变式演练(新高考通用)(解析版).docx
  • 专题10 阅读理解20篇(名校最新期末真题)-2021-2022学年八年级英语下学期期末复习查缺补漏冲刺满分(人教版).docx专题10 阅读理解20篇(名校最新期末真题)-2021-2022学年八年级英语下学期期末复习查缺补漏冲刺满分(人教版).docx
  • 专题10 阅读填表(5空)-冲刺2022年中考英语必考题型终极押题(江苏通用).docx专题10 阅读填表(5空)-冲刺2022年中考英语必考题型终极押题(江苏通用).docx
  • 专题10 阅读回答问题10篇-2023届九年级英语名校真题分类汇编(江苏专用).docx专题10 阅读回答问题10篇-2023届九年级英语名校真题分类汇编(江苏专用).docx
  • 专题10 阅读回答问题-备战2022中考英语全国名校最新模拟试题分类汇编.docx专题10 阅读回答问题-备战2022中考英语全国名校最新模拟试题分类汇编.docx
  • 专题10 阅读回答问题-备战2022中考英语全国名校最新模拟试题分类汇编(1).docx专题10 阅读回答问题-备战2022中考英语全国名校最新模拟试题分类汇编(1).docx
  • 专题10 问鼎中考宾语从句在手-【口袋书】2022年中考英语背诵手册(牛津译林版).docx专题10 问鼎中考宾语从句在手-【口袋书】2022年中考英语背诵手册(牛津译林版).docx
  • 专题10 透过语境巧记高考英语3500词.docx专题10 透过语境巧记高考英语3500词.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1