2022年人教版九年级数学上册第二十四章圆同步测试试卷(含答案详解版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版 九年级 数学 上册 第二 十四 同步 测试 试卷 答案 详解
- 资源描述:
-
1、人教版九年级数学上册第二十四章圆同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,以点为圆心,为半径的圆与所在直线的位置关系是()A相交B相离C相切D无法判断2、如图所示,MN为O的弦,
2、N=52,则MON的度数为()A38B52C76D1043、如图,O的半径为5,弦AB=8,P是弦AB上的一个动点(不与A,B重合),下列符合条件的OP的值是()A6.5B5.5C3.5D2.54、如图,在ABC中, AG平分CAB,使用尺规作射线CD,与AG交于点E,下列判断正确的是()AAG平分CDBC点E是ABC的内心D点E到点A,B,C的距离相等5、如图,在ABCD中,为的直径,O和相切于点E,和相交于点F,已知,则的长为()ABCD26、下列说法中,正确的是()A长度相等的弧是等弧B平分弦的直径垂直于弦,并且平分弦所对的两条弧C经过半径并且垂直于这条半径的直线是圆的切线D在同圆或等圆
3、中90的圆周角所对的弦是这个圆的直径7、丁丁和当当用半径大小相同的圆形纸片分别剪成扇形(如图)做圆锥形的帽子,请你判断哪个小朋友做成的帽子更高一些()A丁丁B当当C一样高D不确定8、如图,在四边形ABCD中,则AB()A4B5CD9、下列说法:(1)长度相等的弧是等弧;(2)弦不包括直径;(3)劣弧一定比优弧短;(4)直径是圆中最长的弦其中正确的有()A1个B2个C3个D4个10、下列多边形中,内角和最大的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为_cm(结果用表示)2、如
4、图所示的网格由边长为个单位长度的小正方形组成,点、在直角坐标系中的坐标分别为,则内心的坐标为_3、如图,从一块半径为的圆形铁皮上剪出一个圆周角为120的扇形,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_4、已知的半径为,直线与相交,则圆心到直线距离的取值范围是_5、如图所示,AB、AC为O的两条弦,延长CA到点D,AD=AB,若ADB=35,则BOC=_三、解答题(5小题,每小题10分,共计50分)1、如图,在中,以为直径的与交于点,连接(1)求证:;(2)若与相切,求的度数;(3)用无刻度的直尺和圆规作出劣弧的中点(不写作法,保留作图痕迹)2、如图1,正五边形内接于,阅读以下作
5、图过程,并回答下列问题,作法:如图2,作直径;以F为圆心,为半径作圆弧,与交于点M,N;连接(1)求的度数(2)是正三角形吗?请说明理由(3)从点A开始,以长为半径,在上依次截取点,再依次连接这些分点,得到正n边形,求n的值3、如图,PA、PB分别切O于A、B,连接PO与O相交于C,连接AC、BC,求证:AC=BC 4、如图,一根长的绳子,一端拴在柱子上,另一端拴着一只羊(羊只能在草地上活动),请画出羊的活动区域5、已知,正方形ABCD中,M、N分别为AD边上的两点,连接BM、CN并延长交于一点H,连接AH,E为BM上一点,连接AE、CE,ECHMNH90(1)如图1,若E为BM的中点,且DM
6、3AM,求线段AB的长(2)如图2,若点F为BE中点,点G为CF延长线上一点,且EG/BC,CEGE,求证:(3)如图3,在(1)的条件下,点P为线段AD上一动点,连接BP,作CQBP于Q,将BCQ沿BC翻折得到BCl,点K、R分别为线段BC、Bl上两点,且BI3RI,BC4BK,连接CR、IK交于点T,连接BT,直接写出BCT面积的最大值-参考答案-一、单选题1、A【解析】【分析】过点C作CDAB于点D,由题意易得AB=5,然后可得,进而根据直线与圆的位置关系可求解【详解】解:过点C作CDAB于点D,如图所示:,根据等积法可得,以点为圆心,为半径的圆,该圆的半径为,圆与AB所在的直线的位置关
7、系为相交,故选A【考点】本题主要考查直线与圆的位置关系,熟练掌握直线与圆的位置关系是解题的关键2、C【解析】【分析】根据半径相等得到OM=ON,则M=N=52,然后根据三角形内角和定理计算MON的度数【详解】OM=ON,M=N=52,MON=180-252=76故选C【考点】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等)3、C【解析】【分析】连接OB,作OMAB与M根据垂径定理和勾股定理,求出OP的取值范围即可判断【详解】解:连接OB,作OMAB与MOMAB,AM=BM=AB=4,在直角OBM中,OB=5,BM=4,故选:C【考点】本题考查了垂径定
8、理、勾股定理,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解4、C【解析】【分析】根据作法可得CD平分ACB,结合题意即可求解【详解】解:由作法得CD平分ACB,AG平分CAB,E点为ABC的内心故答案为:C【考点】此题考查了尺规作图(角平分线),以及三角形角平分线的性质,熟练掌握相关基本性质是解题的关键5、C【解析】【分析】首先求出圆心角EOF的度数,再根据弧长公式,即可解决问题【详解】解:如图连接OE、OF,CD是O的切线,OECD,OED=90,四边形ABCD是平行四边形,C=60,A=C=60,D=120,OA=OF,A=OFA=60,DFO=12
9、0,EOF=360-D-DFO-DEO=30,的长故选:C【考点】本题考查切线的性质、平行四边形的性质、弧长公式等知识,解题的关键是求出圆心角的度数,记住弧长公式6、D【解析】【分析】根据切线的判定,圆的知识,可得答案【详解】解:A、在等圆或同圆中,长度相等的弧是等弧,故A错误;B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故B错误;C、经过半径的外端并且垂直于这条半径的直线是圆的切线,故C错误;D、在同圆或等圆中90的圆周角所对的弦是这个圆的直径,故D正确;故选D【考点】本题考查了切线的判定及圆的知识,利用圆的知识及切线的判定是解题关键7、B【解析】【分析】由图形可知,丁丁扇
10、形的弧长大于当当扇形的弧长,根据弧长与圆锥底面圆的周长相等,可得丁丁剪成扇形做圆锥形的帽子的底面半径r大于当当剪成扇形做圆锥形的帽子的底面半径r,由扇形的半径相等,即母线长相等R,设圆锥底面圆半径为r,母线为R,圆锥的高为h,根据勾股定理由即,可得丁丁的h小于当当的h即可【详解】解:由图形可知,丁丁扇形的弧长大于当当扇形的弧长,根据弧长与圆锥底面圆的周长相等,丁丁剪成扇形做圆锥形的帽子的底面半径r大于当当剪成扇形做圆锥形的帽子的底面半径r,扇形的半径相等,即母线长相等R,设圆锥底面圆半径为r,母线为R,圆锥的高为h,,根据勾股定理由即,丁丁的h小于当当的h,由勾股定理可得当当做成的圆锥形的帽子
11、更高一些故选:B【考点】本题考查扇形作圆锥帽子的应用,利用圆锥的母线底面圆的半径,和圆锥的高三者之间关系,根据勾股定理确定出当当的帽子高是解题关键8、D【解析】【分析】延长AD,BC交于点E,则E=30,先在RtCDE中,求得CE的长,然后在RtABE中,根据E的正切函数求得AB的长【详解】如图,延长AD,BC交于点E,则E=30,在RtCDE中,CE=2CD=6(30锐角所对直角边等于斜边的一半),BE=BC+CE=8,在RtABE中,AB=BEtanE=8=.故选D.【考点】本题考查了解直角三角形,特殊角的三角函数值,解此题的关键在于构造一个直角三角形,然后利用锐角三角函数进行解答.9、A
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2025版高考英语一轮总复习 语法专题突破 专题3 第1讲 并列句和状语从句课件.ppt
