分享
分享赚钱 收藏 举报 版权申诉 / 21

类型2022年强化训练京改版八年级数学上册期末定向攻克试题 卷(Ⅱ)(含答案详解).docx

  • 上传人:a****
  • 文档编号:701310
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:21
  • 大小:356.57KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年强化训练京改版八年级数学上册期末定向攻克试题 卷含答案详解 2022 强化 训练 改版 八年 级数 上册 期末 定向 攻克 试题 答案 详解
    资源描述:

    1、京改版八年级数学上册期末定向攻克试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、若,则a,b,c的大小关系为()ABCD2、等腰三角形两边长为3,6,则第三边的长是()A3B6CD3或63、如图

    2、,在ABC中,AD是BC边上的高,BAF=CAG=90,AB=AF,AC=AG,连接FG,交DA的延长线于点E,连接BG,CF, 则下列结论:BG=CF;BGCF;EAF=ABC;EF=EG,其中正确的有()ABCD4、四个数0,1,中,无理数的是()AB1CD05、若一个直角三角形的两边长为4和5,则第三边长为()A3BC8D3或二、多选题(5小题,每小题4分,共计20分)1、下列说法不正确的是()A任何数都有两个平方根B若a2=b2,则a=bC=2D8的立方根是22、如图,为了估计池塘两岸,间的距离,在池塘的一侧选取点,测得米,米,那么,间的距离可能是()A5米B8.7米C27米D18米3

    3、、下列命题中正确的是()A有两个角和第三个角的平分线对应相等的两个三角形全等;B有两条边和第三条边上的中线对应相等的两个三角形全等;C有两条边和第三条边上的高对应相等的两个三角形全等D有两条边和一个角对应相等的两个三角形全等4、已知三角形的六个元素如图所示,则甲、乙、丙三个三角形中与全等的是()A甲B乙C丙D不能确定5、在直角三角形中,若两边的长分别为1,2,则第三边的边长为()A3BCD1第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、计算_2、公元三世纪,我国汉代数学家赵爽在注解周髀算经时给出的“赵爽弦图”,它由四个全等的直角三角形与中间的小正方形拼成的一个大正方形

    4、,如果小正方形面积是49,直角三角形中较小锐角的正切为,那么大正方形的面积是_3、当_时,分式的值为0.4、如图,在中,点,都在边上,若,则的长为_.5、附加题:观察以下几组勾股数,并寻找规律:3,4,5;5,12,13;7,24,25;9,40,41;请你写出有以上规律的第组勾股数:_四、解答题(5小题,每小题8分,共计40分)1、如图,已知ABC求作:BC边上的高与内角B的角平分线的交点2、计算(1)(2)3、计算:(1)(2)4、计算:(1);(2).5、在计算的值时,小亮的解题过程如下:解:原式(1)老师认为小亮的解法有错,请你指出:小亮是从第_步开始出错的;(2)请你给出正确的解题过

    5、程-参考答案-一、单选题1、C【解析】【分析】根据无理数的估算进行大小比较【详解】解:,又,故选:C【考点】本题考查求一个数的算术平方根,求一个数的立方根及无理数的估算,理解相关概念是解题关键2、B【解析】【分析】题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】由等腰三角形的概念,得第三边的长可能为3或6,当第三边是3时,而3+3=6,所以应舍去;则第三边长为6故选B【考点】此题考查等腰三角形的性质和三角形的三边关系解题关键在于已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构

    6、成三角形进行解答3、D【解析】【分析】证得CAFGAB(SAS),从而推得正确;利用CAFGAB及三角形内角和与对顶角,可判断正确;证明AFMBAD(AAS),得出FM=AD,FAM=ABD,则正确,同理ANGCDA,得出NG=AD,则FM=NG,证明FMEGNE(AAS)可得出结论正确【详解】解:BAF=CAG=90,BAF+BAC=CAG+BAC,即CAF=GAB,又AB=AF=AC=AG,CAFGAB(SAS),BG=CF,故正确;FACBAG,FCA=BGA,又BC与AG所交的对顶角相等,BG与FC所交角等于GAC,即等于90,BGCF,故正确;过点F作FMAE于点M,过点G作GNAE

    7、交AE的延长线于点N,FMA=FAB=ADB=90,FAM+BAD=90,FAM+AFM=90,BAD=AFM,又AF=AB,AFMBAD(AAS),FM=AD,FAM=ABD,故正确,同理ANGCDA,NG=AD,FM=NG,FMAE,NGAE,FME=ENG=90,AEF=NEG,FMEGNE(AAS)EF=EG故正确故选:D【考点】本题综合考查了全等三角形的判定与性质及等腰三角形的三线合一性质与互余、对顶角,三角形内角和等几何基础知识熟练掌握全等三角形的判定与性质是解题的关键4、A【解析】【分析】分别根据无理数、有理数的定义即可判定选择项【详解】0,1,是有理数,是无理数,故选A【考点】

    8、此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数如,0.8080080008(每两个8之间依次多1个0)等形式5、D【解析】【分析】由于直角三角形的斜边不能确定,故应分5是直角边或5是斜边两种情况进行讨论【详解】当5是直角边时,则第三边=;当5是斜边时,则第三边=综上所述,第三边的长是或3故选D【考点】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键二、多选题1、ABC【解析】【分析】由负数没有平方根,的平方根是正数的平方根有两个可判断 由平方根的含义可判断 由的含义可判断 由立方根的含义可判断 从

    9、而可得答案.【详解】解:负数没有平方根,的平方根是 故符合题意;由a2=b2可得: 故符合题意;故符合题意;8的立方根是2,故不符合题意;故选:【考点】本题考查的是平方根的含义,立方根的含义,利用平方根的含义解方程,熟悉平方根与立方根是解题的关键.2、ABD【解析】【分析】连接AB,根据三角形的三边关系定理得出不等式,即可得出选项【详解】解:连接AB,PA=15米,PB=11米,由三角形三边关系定理得:1511AB15+11,4AB26,那么,间的距离可能是5米、8.7米、18米;故选:ABD【考点】本题考查了三角形的三边关系定理,能根据三角形的三边关系定理得出不等式是解此题的关键3、AB【解

    10、析】【分析】结合已知条件和全等三角形的判定方法,对所给的四个命题依次判定,即可解答【详解】A、正确可以用AAS判定两个三角形全等;如图:BB,CC,AD平分BAC,AD平分BAC,且ADAD, BB,CC,BACBAC,AD,AD分别平分BAC,BAC,BADBAD ,ABDABD(AAS),ABAB,在ABC和ABC中, ,ABCABC(AAS)B、正确可以用“倍长中线法”,用SAS定理,判断两个三角形全等,如图, , , ,AD,AD分别为、 的中线,分别延长AD,AD到E,E,使得AD=DE,AD=DE, ,ADCEDB,BE=AC,同理:BE=AC,BE=BE,AE=AE,ABEABE

    11、,BAE=BAE,E=E,CAD=CAD,BAC=BAC, , ,BACBACC、不正确因为这个高可能在三角形的内部,也有可能在三角形的外部,也就是说,这两个三角形可能一个是锐角三角形,一个是钝角三角形,所以就不全等D、不正确,必须是两边及其夹角分别对应相等的两个三角形全等故选:AB【考点】本题考查了全等三角形的判定方法,要根据选项提供的已知条件逐个分析,看是否符合全等三角形的判定方法,注意SSA是不能判定两三角形全等的4、BC【解析】【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)逐个判断即可【详解】解:已知ABC中,B50,C58,A72,BCa,ABc,ACb,图甲:只

    12、有一条边和AB相等,没有其它条件,不符合三角形全等的判定定理,即和ABC不全等;图乙:只有两个角对应相等,还有一条边对应相等,符合三角形全等的判定定理(AAS),即和ABC全等;图丙:有两边及其夹角,符合三角形全等的判定定理(SAS),能推出两三角形全等;故选:BC【考点】本题考查了全等三角形的判定,解题的关键是注意掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS5、BC【解析】【分析】分两种情况讨论:当第三边为直角边或斜边时,再利用勾股定理可得结论.【详解】解:当直角三角形的第三边为斜边时:则第三边为:当直角三角形的第三边为直角边时,则为斜边,则第三边为: 故第三边为:或.

    13、故选:【考点】本题考查的是勾股定理的应用,有清晰的分类讨论思想是解题的关键.三、填空题1、【解析】【分析】根据分式的运算法则计算即可【详解】解:,故答案为:【考点】此题主要考查分式的运算,解题的关键是熟知其运算法则2、169【解析】【分析】由题意知小正方形的边长为7设直角三角形中较小边长为a,较长的边为b,运用正切函数定义求解【详解】解:由题意知,小正方形的边长为7,设直角三角形中较小边长为a,较长的边为b,则tan短边:长边a:b5:12所以ba,又以为ba+7,联立,得a5,b12所以大正方形的面积是:a2+b225+144169故答案是:169【考点】本题主要考查了解直角三角形、勾股定理

    14、的证明和正方形的面积,掌握解直角三角形、勾股定理的证明和正方形的面积是解题的关键.3、且【解析】【分析】根据分式的值为零,分子等于0,分母不等于0即可求解.【详解】由题意得:且解得:且故填:且.【考点】主要考查分式的值为零的条件,注意:分式的值为零,分子等于0,分母不等于0.4、9.【解析】【分析】根据等腰三角形的性质及全等三角形的判定与性质即可求解.【详解】因为ABC是等腰三角形,所以有AB=AC,BAD=CAE,ABD=ACE,所以ABDACE(ASA),所以BD=EC,EC=9.【考点】此题主要考查等腰三角形的性质,解题的关键是熟知全等三角形的判定与性质.5、11,60,61【解析】【分

    15、析】由所给勾股数发现第一个数是奇数,且逐步递增2,知第5组第一个数是11,第二、第三个数相差为1,设第二个数为x,则第三个数为,由勾股定理得:,计算求解即可【详解】解:由所给勾股数发现第一个数是奇数,且逐步递增2,知第5组第一个数是11,第二、第三个数相差为1,设第二个数为x,则第三个数为,由勾股定理得:,解得x60,第5组数是:11、60、61故答案为:11、60、61【考点】本题考查了数字类规律,勾股定理等知识解题的关键在于推导规律四、解答题1、详见解析.【解析】【分析】过点A作BC的垂线,作出B的平分线,二者交点即为所求的点.【详解】如图:P点即为所求【考点】本题考查了尺规作图,熟练掌握

    16、垂线和角平分线的作图步骤是解答本题的关键.2、(1);(2)0【解析】【分析】(1)先算乘除并化简,再算加减法;(2)先利用平方差公式计算,再作加减法【详解】解:(1)=;(2)=0【考点】本题考查了二次根式的混合运算,解题的关键是掌握运算法则3、(1)-4y2;(2)x-2【解析】(1)按照整式的加减乘除运算法则,先去括号,再合并同类项(2) 按照分式的加减乘除法则,先算括号里面的,括号里面先通分,再加减,再化除为乘,能约分的要约分【详解】解:(1)原式=,=,=;(2)原式=x-2【考点】本题考查了整式的加减乘除运算,以及分式的加减乘除混合运算,解题的关键是熟练掌握整式,分式的加减乘除运算法则4、 (1)(2)【解析】【分析】(1)先把各二次根式化为最简二次根式得到,然后合并同类二次根式即可;(2)先把各二次根式化为最简二次根式和根据二次根式的乘除法运算得到,然后合并(1)原式;(2)原式【考点】本题考查二次根式的混合运算,解题的关键是掌握二次根式混合运算的相关法则5、(1);(2)答案见解析【解析】【分析】根据二次根式的运算法则即可求出答案【详解】解:(1)二次根式加减时不能将根号下的被开方数进行加减,故错误,故填;(2)原式=2=6=4【考点】本题考查了二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年强化训练京改版八年级数学上册期末定向攻克试题 卷(Ⅱ)(含答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-701310.html
    相关资源 更多
  • 专题05 动词和非谓语动词专项讲练-2023中考英语二轮复习讲练测(广东专用).docx专题05 动词和非谓语动词专项讲练-2023中考英语二轮复习讲练测(广东专用).docx
  • 专题05 动词和非谓语动词专项测试-2023中考英语二轮复习讲练测(广东专用).docx专题05 动词和非谓语动词专项测试-2023中考英语二轮复习讲练测(广东专用).docx
  • 专题05 动点折叠类问题中函数及其综合题型(学生版)学霸冲冲冲shop348121278.taobao.com.docx专题05 动点折叠类问题中函数及其综合题型(学生版)学霸冲冲冲shop348121278.taobao.com.docx
  • 专题05 功和功率【考题猜想】(解析版).docx专题05 功和功率【考题猜想】(解析版).docx
  • 专题05 功和功率【考题猜想】(原卷版).docx专题05 功和功率【考题猜想】(原卷版).docx
  • 专题05 功和功率【考点清单】(解析版).docx专题05 功和功率【考点清单】(解析版).docx
  • 专题05 功和功率【考点清单】(原卷版).docx专题05 功和功率【考点清单】(原卷版).docx
  • 专题05 分类打靶函数应用与函数模型(练习)(解析版).docx专题05 分类打靶函数应用与函数模型(练习)(解析版).docx
  • 专题05 分类打靶函数应用与函数模型(练习)(原卷版).docx专题05 分类打靶函数应用与函数模型(练习)(原卷版).docx
  • 专题05 分类打靶函数应用与函数模型(6大核心考点)(讲义)(解析版).docx专题05 分类打靶函数应用与函数模型(6大核心考点)(讲义)(解析版).docx
  • 专题05 分类打靶函数应用与函数模型(6大核心考点)(讲义)(原卷版).docx专题05 分类打靶函数应用与函数模型(6大核心考点)(讲义)(原卷版).docx
  • 专题05 分段函数研究(教师版).docx专题05 分段函数研究(教师版).docx
  • 专题05 分段函数研究(学生版).docx专题05 分段函数研究(学生版).docx
  • 专题05 分式篇(解析版).docx专题05 分式篇(解析版).docx
  • 专题05 分式篇(原卷版).docx专题05 分式篇(原卷版).docx
  • 专题05 分式方程(解析版).docx专题05 分式方程(解析版).docx
  • 专题05 分式方程(原卷版).docx专题05 分式方程(原卷版).docx
  • 专题05 函数的概念-【中职专用】中职高考数学二轮复习专项突破.docx专题05 函数的概念-【中职专用】中职高考数学二轮复习专项突破.docx
  • 专题05 函数的最大(小)值(含解析)-2021-2022学年高一数学重难点手册(函数的概念与性质篇人教A版2019必修第一册).docx专题05 函数的最大(小)值(含解析)-2021-2022学年高一数学重难点手册(函数的概念与性质篇人教A版2019必修第一册).docx
  • 专题05 函数 5.9函数零点 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.9函数零点 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.8函数图像 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.8函数图像 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题05 函数 5.8函数图像 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.8函数图像 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.7对称性与周期性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.7对称性与周期性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.6奇偶性 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.5单调性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.5单调性 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 专题05 函数 5.5单调性 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.5单调性 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.4对数函数 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx专题05 函数 5.4对数函数 题型归纳讲义-2022届高三数学一轮复习(原卷版).docx
  • 专题05 函数 5.3指数函数 题型归纳讲义-2022届高三数学一轮复习(解析版).docx专题05 函数 5.3指数函数 题型归纳讲义-2022届高三数学一轮复习(解析版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1