分享
分享赚钱 收藏 举报 版权申诉 / 7

类型6.2.3组合教学设计【新教材 新思维高中数学】-2021-2022学年上学期高二数学同步教学(人教A版(2019)选择性必修第三册).docx

  • 上传人:a****
  • 文档编号:776163
  • 上传时间:2025-12-14
  • 格式:DOCX
  • 页数:7
  • 大小:188.14KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    新教材 新思维高中数学
    资源描述:

    1、6.2.3组合 一、教材分析本节课选自2019人教A版高中数学选择性必修第三册,第六章计数原理,本节课主本节课主要学习组合与组合数.排列与组合是在学习了两个计数原理之后,由于排列、组合及二项式定理的研究都是以两个计数原理为基础,同时排列和组合又能进一步简化和优化计数问题。教学的重点是组合的理解,利用计数原理及排列数公式推导组合数公式,注意区分排列与组合的区别,难点是运用组合解决实际问题。二、教学目标课程目标学科素养A. 理解并掌握组合的概念,掌握组合与排列之间的联系与区别.1.数学抽象:组合的概念 2.数学建模:运用组合解决计数问题三、教学重难点重点:组合概念并运用排列组合公式解决问题 难点:

    2、组合与排列之间的联系与区别 四、教学过程教学过程教学设计意图核心素养目标一、 问题探究问题1. 从甲乙丙三名同学中选两名去参加一项活动,有多少种不同的选法?这一问题与6.2.1节问题一有什么联系与区别?分析:在6.2.1节问题1的6种选法中,存在“甲上午,乙下午”和“甲上午,乙下午” 2种不同顺序的选法,我们可以将它看成先选出甲、乙两名同学,然后再分配上午和下午而得到的.同样,先选出甲、丙、或乙、丙,再分配上午和下午也各有2种方法.从而甲、乙、丙3名同选2名去参加一项活动,就只需考虑选出的2名同学作为一组,不需要考虑他们的顺序。于是,在6.2.1节问题1的6种选法中,将选出的2名同学作为一组的

    3、选法就只有如下3种情况:甲乙、甲丙、乙丙.从三个不同元素中取出两个元素作为一组一共有多少个不同的组?一、组合的相关概念1.组合:一般地,从n个不同元素中取出m(mn)个元素作为一组,叫做从n个不同元素中取出m个元素的一个组合.2.相同组合:两个组合只要元素相同,不论元素的顺序如何,都是相同的.名师点析排列与组合的区别与联系(1)共同点:两者都是从n个不同元素中取出m(mn)个元素.(2)不同点:排列与元素的顺序有关,组合与元素的顺序无关.例1.校门口停放着9辆共享自行车,其中黄色、红色和绿色的各有3辆,下面的问题是排列问题,还是组合问题?(1)从中选3辆,有多少种不同的方法?(2)从中选2辆给

    4、3位同学有多少种不同的方法?(1)与顺序无关,是组合问题;(2)选出2辆给3位同学是有顺序的,是排列问题。例2.平面内有A,B,C,D共4个点.(1)以其中2个点为端点的有向线段共有多少条?(2)以其中2个点为端点的线段共有多少条?分析:(1)确定一条有向线段,不仅要确定两个端点,还要考虑他们的顺序是排列问题;(2)确定一条线段,只需确定两个端点,而不需要考虑它们的顺序是组合问题.解:(1)一条有向线段的两个端点,要分起点和终点,以平面内4个点中的2个为端点的有向线段条数,就是从4个不同元素中取出2个元素的排列数,即有向线段条数为A42=43=12.这12条有向线段分别为AB,BA, AC,C

    5、A, AD,DA, BC,CB, BD, DB,CD, DC.(2)由于不考虑两个端点的顺序,因此将(1)中端点相同、方向不同的2条有向线段作为一条线段,就是中平面内4个点中的2个点为端点的线段的条数,共有如下6条:AB,AC,AD,BC,BD,CD.问题2:利用排列和组合之间的关系,以“元素相同” 为标准分类,你能建立起例5(1)中排列和(2)中组合之间的对应关系吗?进一步地,能否从这种对应关系出发,由排列数求出组合的个数?【例1】判断下列问题是排列问题还是组合问题.(1)a,b,c,d四支足球队之间进行单循环比赛,共需比赛多少场?(2)a,b,c,d四支足球队争夺冠、亚军,有多少种不同的结

    6、果?(3)从全班40人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?(4)从全班40人中选出3人参加某项活动,有多少种不同的选法?解(1)单循环比赛要求两支球队之间只打一场比赛,没有顺序,是组合问题.(2)冠、亚军是有顺序的,是排列问题.(3)3人分别担任三个不同职务,有顺序,是排列问题.(4)3人参加某项相同活动,没有顺序,是组合问题.思维升华区分排列与组合的办法是首先弄清楚事件是什么,区分的标准是有无顺序,而区分有无顺序的方法是:把问题的一个选择结果写出来,然后交换这个结果中任意两个元素的位置,看是否产生新的变化,若有新变化,即说明有顺序,是排列问题;若无新变化,即

    7、说明无顺序,是组合问题.【训练1】判断下列问题是排列问题还是组合问题.(1)集合0,1,2,3,4的含三个元素的子集的个数是多少?(2)某小组有9位同学,从中选出正、副班长各一名,有多少种不同的选法?若从中选出2名代表参加一个会议,有多少种不同的选法?解(1)由于集合中的元素是无序的,一个含三个元素的集合就是一个从0,1,2,3,4中取出3个数组成的集合.这是一个组合问题.(2)选正、副班长时要考虑顺序,所以是排列问题;选代表参加会议是不用考虑顺序的,所以是组合问题.题型二简单的组合问题【例2】有5名教师,其中3名男教师,2名女教师.(1)现要从中选2名去参加会议,有_种不同的选法;(2)选出

    8、2名男教师或2名女教师参加会议,有_种不同的选法;(3)现要从中选出男、女教师各2名去参加会议,有_种不同的选法.答案(1)10(2)4(3)3解析(1)从5名教师中选2名去参加会议的选法种数,通过列举法可得共有10种不同的方法.(2)可把问题分两类情况:第1类,选出的2名是男教师,有3种方法;第2类,选出的2名是女教师,有1种方法.根据分类加法计数原理,共有314(种)不同选法.(3)从3名男教师中选2名的选法有3种,从2名女教师中选2名的选法有1种,根据分步乘法计数原理,共有不同的选法313(种).思维升华(1)解简单的组合应用题时,首先要判断它是不是组合问题,组合问题与排列问题的根本区别

    9、在于排列问题与取出元素之间的顺序有关,而组合问题与取出元素的顺序无关.(2)要注意两个基本原理的运用,即分类与分步的灵活运用.在分类和分步时,一定注意有无重复或遗漏.【训练2】一个口袋内装有大小相同的4个白球和1个黑球.(1)从口袋内取出的3个小球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法?(3)从口袋内取出3个球,使其中不含黑球,有多少种取法?解(1)从口袋内的5个球中取出3个球,取法种数是10.(2)从口袋内取出3个球有1个是黑球,于是需要从4个白球中取出2个,取法种数是6.(3)由于所取出的3个球中不含黑球,也就是要从4个白球中取出3个球,取法种数是4.

    10、题型三双重元素的组合问题【例3】某中学要从4名男生和3名女生中选4人参加公益活动,若男生甲和女生乙不能同时参加,则不同的选派方案共有()A.25种 B.35种 C.820种 D.840种答案A解析分三类完成:男生甲参加,女生乙不参加,只需在其余5人中选3人,有10种选法;男生甲不参加,女生乙参加,只需在其余5人中选3人,有10种选法;两人都不参加,只需在其余5人中选4人,有5种选法.由分类加法计数原理共有1010525(种)不同的选派方案.思维升华本题用到两个计数原理解题,两个原理的区别在于:分类加法计数原理每次得到的是最后结果,分步乘法计数原理每次得到的是中间结果,即每次仅完成整件事情的一部

    11、分,当且仅当几个步骤全部做完后,整件事情才算完成.【训练3】某校开设A类选修课3门,B类选修课5门,一位同学要从中选3门.若要求两类课程中各至少选1门,则不同的选法共有()A.15种 B.30种C.45种 D.90种答案C解析分两类,A类选修课选1门,B选修课选2门,或者A类选修课选2门,B类选修课选1门,因此,共有3103545(种)选法.三、课堂小结1.牢记2个知识点(1)组合的概念;(2)排列与组合之间的联系与区别.2.掌握2种方法(1)解简单的组合应用题的方法;(2)解双重元素的组合问题的方法.3.注意1个易错点排列与组合的区分标准是有无顺序.通过具体问题,分析、比较、归纳出组合的概念。发展学生数学运算,数学抽象和数学建模的核心素养。

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:6.2.3组合教学设计【新教材 新思维高中数学】-2021-2022学年上学期高二数学同步教学(人教A版(2019)选择性必修第三册).docx
    链接地址:https://www.ketangku.com/wenku/file-776163.html
    关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1