分享
分享赚钱 收藏 举报 版权申诉 / 6

类型《创新设计-课堂讲义》2015-2016学年高中数学(人教A版选修1-1)课时作业:第2章 圆锥曲线与方程2.2.2 .docx

  • 上传人:a****
  • 文档编号:787521
  • 上传时间:2025-12-14
  • 格式:DOCX
  • 页数:6
  • 大小:219.15KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    创新设计-课堂讲义
    资源描述:

    1、2.2.2双曲线的简单几何性质课时目标1.掌握双曲线的简单几何性质.2.了解双曲线的渐近性及渐近线的概念.3.掌握直线与双曲线的位置关系1双曲线的几何性质标准方程1(a0,b0)1(a0,b0)图形性质焦点焦距范围对称性顶点轴长实轴长_,虚轴长_离心率渐近线2.直线与双曲线一般地,设直线l:ykxm (m0) 双曲线C:1 (a0,b0) 把代入得(b2a2k2)x22a2mkxa2m2a2b20.(1)当b2a2k20,即k时,直线l与双曲线的渐近线平行,直线与双曲线C相交于_(2)当b2a2k20,即k时,(2a2mk)24(b2a2k2)(a2m2a2b2)0直线与双曲线有_公共点,此时

    2、称直线与双曲线相交;0直线与双曲线有_公共点,此时称直线与双曲线相切;0,b0)的虚轴长为2,焦距为2,则双曲线的渐近线方程为()Ayx By2xCyx Dyx5直线l过点(,0)且与双曲线x2y22仅有一个公共点,则这样的直线有()A1条 B2条 C3条 D4条6已知双曲线1 (a0,b0)的左、右焦点分别为F1、F2,点P在双曲线的右支上,且|PF1|4|PF2|,则此双曲线的离心率e的最大值为()A. B. C2 D.题号123456答案二、填空题7两个正数a、b的等差中项是,一个等比中项是,且ab,则双曲线1的离心率e_.8在ABC中,a,b,c分别是A,B,C的对边,且a10,cb6

    3、,则顶点A运动的轨迹方程是_9与双曲线1有共同的渐近线,并且经过点(3,2)的双曲线方程为_三、解答题10根据下列条件,求双曲线的标准方程(1)经过点,且一条渐近线为4x3y0;(2)P(0,6)与两个焦点连线互相垂直,与两个顶点连线的夹角为.11设双曲线x21上两点A、B,AB中点M(1,2),求直线AB的方程能力提升12设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A BC D13设双曲线C:y21 (a0)与直线l:xy1相交于两个不同的点A、B.(1)求双曲线C的离心率e的取值范围;(2)若设直线l与y轴的交点为P,且,求

    4、a的值1双曲线1 (a0,b0)既关于坐标轴对称,又关于坐标原点对称;其顶点为(a,0),实轴长为2a,虚轴长为2b;其上任一点P(x,y)的横坐标均满足|x|a.2双曲线的离心率e的取值范围是(1,),其中c2a2b2,且,离心率e越大,双曲线的开口越大可以通过a、b、c的关系,列方程或不等式求离心率的值或范围3双曲线1 (a0,b0)的渐近线方程为yx,也可记为0;与双曲线1具有相同渐近线的双曲线的方程可表示为 (0)22.2双曲线的简单几何性质答案知识梳理1.标准方程1(a0,b0)1(a0,b0)图形性质焦点F1(c,0),F2(c,0)F1(0,c),F2(0,c)焦距|F1F2|2

    5、c范围xa或xa,yRya或ya,xR对称性关于x轴、y轴和原点对称顶点(a,0),(a,0)(0,a),(0,a)轴长实轴长2a,虚轴长2b离心率e(e1)渐近线yxyx2.(1)一点(2)两个一个没有作业设计1Be,e2,.2A3C由于椭圆4x2y21的焦点坐标为,则双曲线的焦点坐标为,又由渐近线方程为yx,得,即a22b2,又由2a2b2,得a2,b2,又由于焦点在y轴上,因此双曲线的方程为2y24x21.故选C.4C由题意知,2b2,2c2,则b1,c,a;双曲线的渐近线方程为yx.5C点(,0)即为双曲线的右顶点,过该点有两条与双曲线渐近线平行的直线与双曲线仅有一个公共点,另过该点且

    6、与x轴垂直的直线也与双曲线只有一个公共点6B|PF1|PF2|2a,即3|PF2|2a,所以|PF2|ca,即2a3c3a,即5a3c,则.7.解析ab5,ab6,解得a,b的值为2或3.又ab,a3,b2.c,从而e.8.1(x3)解析以BC所在直线为x轴,BC的中点为原点建立直角坐标系,则B(5,0),C(5,0),而|AB|AC|63)9.1解析所求双曲线与双曲线1有相同的渐近线,可设所求双曲线的方程为 (0)点(3,2)在双曲线上,.所求双曲线的方程为1.10解(1)因直线x与渐近线4x3y0的交点坐标为,而30时,设A(x1,y1),B(x2,y2),则1,k1,满足0,直线AB的方

    7、程为yx1.方法二(用点差法解决)设A(x1,y1),B(x2,y2),则,两式相减得(x1x2)(x1x2)(y1y2)(y1y2)x1x2,kAB1,直线AB的方程为yx1,代入x21满足0.直线AB的方程为yx1.12. D设双曲线方程为1(a0,b0),如图所示,双曲线的一条渐近线方程为yx,而kBF,()1,整理得b2ac.c2a2ac0,两边同除以a2,得e2e10,解得e或e(舍去)13解(1)由双曲线C与直线l相交于两个不同的点得有两个不同的解,消去y并整理得(1a2)x22a2x2a20,解得a0,0a且a1.双曲线的离心率e ,0a且e.双曲线C的离心率e的取值范围是(,)(2)设A(x1,y1),B(x2,y2),P(0,1) ,(x1,y11)(x2,y21),由此可得x1x2.x1,x2都是方程的根,且1a20,x1x2x2,x1x2x,消去x2得,即a2.又a0,a.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《创新设计-课堂讲义》2015-2016学年高中数学(人教A版选修1-1)课时作业:第2章 圆锥曲线与方程2.2.2 .docx
    链接地址:https://www.ketangku.com/wenku/file-787521.html
    相关资源 更多
  • 专题 01中国文化读写专项:中国概况 中国简介- 2024年高考英语常考中国文化读写专练 素材积累.docx专题 01中国文化读写专项:中国概况 中国简介- 2024年高考英语常考中国文化读写专练 素材积累.docx
  • 专题 01 英美文化阅读理解专项:移民之国 早期美国 印第安人-2024年高考英语常考英美文化阅读专练 素材积累.docx专题 01 英美文化阅读理解专项:移民之国 早期美国 印第安人-2024年高考英语常考英美文化阅读专练 素材积累.docx
  • 专题 01 生物多样性保护--2023年高考英语外刊时文精读精练.docx专题 01 生物多样性保护--2023年高考英语外刊时文精读精练.docx
  • 专题 01 推断题(下)-【尖子生训练营】2022年初中化学尖子生选拔专题训练(解析版).docx专题 01 推断题(下)-【尖子生训练营】2022年初中化学尖子生选拔专题训练(解析版).docx
  • 专题 01 推断题(下)-【尖子生训练营】2022年初中化学尖子生选拔专题训练(原卷版).docx专题 01 推断题(下)-【尖子生训练营】2022年初中化学尖子生选拔专题训练(原卷版).docx
  • 专题 01 单项选择【考题猜想 】 -2023-2024学年七年级英语上学期期末考末大串讲(人教版)原卷版.docx专题 01 单项选择【考题猜想 】 -2023-2024学年七年级英语上学期期末考末大串讲(人教版)原卷版.docx
  • 专题 01申请信 (应用文写作)-2024年新高考英语一轮复习练小题刷大题提能力(解析版).docx专题 01申请信 (应用文写作)-2024年新高考英语一轮复习练小题刷大题提能力(解析版).docx
  • 专题 01构词法之组合练-2024年新高考英语一轮复习练小题刷大题提能力(原卷版).docx专题 01构词法之组合练-2024年新高考英语一轮复习练小题刷大题提能力(原卷版).docx
  • 专题牛一、摩擦力与二力平衡综合问题必刷题-2022-2023学年八年级下册物理《考点•题型 •技巧》精讲与精练高分突破专题系列(人教版).docx专题牛一、摩擦力与二力平衡综合问题必刷题-2022-2023学年八年级下册物理《考点•题型 •技巧》精讲与精练高分突破专题系列(人教版).docx
  • 专项集训8力学实验题-备战2022年中考物理热门专项集训.docx专项集训8力学实验题-备战2022年中考物理热门专项集训.docx
  • 专项讲解虚拟语气.docx专项讲解虚拟语气.docx
  • 专项训练(四)有关气体制取的题型(解析版).docx专项训练(四)有关气体制取的题型(解析版).docx
  • 专项训练(五)绿色植物的三大作用(原卷版).docx专项训练(五)绿色植物的三大作用(原卷版).docx
  • 专项训练(二)有关化学式的计算题型(原卷版).docx专项训练(二)有关化学式的计算题型(原卷版).docx
  • 专项训练(三)有关化学方程式的计算题型(原卷版).docx专项训练(三)有关化学方程式的计算题型(原卷版).docx
  • 专项训练(一) 电磁继电器 电磁铁(解析版).docx专项训练(一) 电磁继电器 电磁铁(解析版).docx
  • 专项训练(一) 电磁继电器 电磁铁(原卷版).docx专项训练(一) 电磁继电器 电磁铁(原卷版).docx
  • 专项训练教师版.docx专项训练教师版.docx
  • 专项训练学生版.docx专项训练学生版.docx
  • 专项训练四 立体几何(考点2 利用空间向量求空间角)(原卷版).docx专项训练四 立体几何(考点2 利用空间向量求空间角)(原卷版).docx
  • 专项训练五 解析几何(考点3 解析几何中的定点、定值问题)(原卷版).docx专项训练五 解析几何(考点3 解析几何中的定点、定值问题)(原卷版).docx
  • 专项训练五 解析几何(考点1 解析几何中的轨迹方程的求法)(解析版).docx专项训练五 解析几何(考点1 解析几何中的轨迹方程的求法)(解析版).docx
  • 专项训练五 解析几何(考点1 解析几何中的轨迹方程的求法)(原卷版).docx专项训练五 解析几何(考点1 解析几何中的轨迹方程的求法)(原卷版).docx
  • 专项训练三 概率与统计(考点4 统计与概率的综合应用)(解析版).docx专项训练三 概率与统计(考点4 统计与概率的综合应用)(解析版).docx
  • 专项训练三 概率与统计(考点4 统计与概率的综合应用)(原卷版).docx专项训练三 概率与统计(考点4 统计与概率的综合应用)(原卷版).docx
  • 专项训练4 化学用语.docx专项训练4 化学用语.docx
  • 专项训练3酸 碱 盐综合训练.docx专项训练3酸 碱 盐综合训练.docx
  • 专项训练3 化合价与化学式.docx专项训练3 化合价与化学式.docx
  • 专项训练2金属活动性顺序及应用.docx专项训练2金属活动性顺序及应用.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1