分享
分享赚钱 收藏 举报 版权申诉 / 7

类型《创新设计-课堂讲义》2016-2017学年高中数学(人教版选修1-1)课时作业:模块综合检测(B) WORD版含答案.docx

  • 上传人:a****
  • 文档编号:787704
  • 上传时间:2025-12-14
  • 格式:DOCX
  • 页数:7
  • 大小:82.34KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    创新设计-课堂讲义
    资源描述:

    1、模块综合检测(B)(时间:120分钟满分:150分)一、选择题(本大题12小题,每小题5分,共60分)1已知命题“p:x4或x0”,命题“q:xZ”,如果“p且q”与“非q”同时为假命题,则满足条件的x为()Ax|x3或x1,xZBx|1x3,xZC1,0,1,2,3D1,2,32“a0”是“|a|0”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件3已知2xy0是双曲线x2y21的一条渐近线,则双曲线的离心率是()A. B. C. D24已知双曲线的离心率为2,焦点是(4,0),(4,0),则双曲线方程为()A.1 B.1C.1 D.15已知ABC的顶点B、C在椭圆y2

    2、1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是()A2 B6 C4 D126过点(2,2)与双曲线x22y22有公共渐近线的双曲线方程为()A.1 B.1C.1 D.17曲线yx33x21在点(1,1)处的切线方程为()Ay3x4 By3x2Cy4x3 Dy4x58函数f(x)x22ln x的单调递减区间是()A(0,1 B1,)C(,1,(0,1) D1,0),(0,19已知椭圆x22y24,则以(1,1)为中点的弦的长度为()A3 B2C. D.10设曲线y在点(3,2)处的切线与直线axy10垂直,则a等于()A2 B. C D211若函数yf(x)的导函

    3、数在区间a,b上是增函数,则函数yf(x)在区间a,b上的图象可能是()12已知函数f(x)的导函数f(x)4x34x,且f(x)的图象过点(0,5),当函数f(x)取得极小值6时,x的值应为()A0 B1 C1 D1题号123456789101112答案二、填空题(本大题共4小题,每小题5分,共20分)13已知双曲线x21,那么它的焦点到渐近线的距离为_14点P是曲线yx2ln x上任意一点,则P到直线yx2的距离的最小值是_15给出如下三种说法:四个实数a,b,c,d依次成等比数列的必要而不充分条件是adbc.命题“若x3且y2,则xy1”为假命题若pq为假命题,则p,q均为假命题其中正确

    4、说法的序号为_16双曲线1 (a0,b0)的两个焦点F1、F2,若P为双曲线上一点,且|PF1|2|PF2|,则双曲线离心率的取值范围为_三、解答题(本大题共6小题,共70分)17(10分)命题p:方程x2mx10有两个不等的负实数根,命题q:方程4x24(m2)x10无实数根若“p或q”为真命题,“p且q”为假命题,求m的取值范围18(12分)F1,F2是椭圆的两个焦点,Q是椭圆上任意一点,从任一焦点向F1QF2中的F1QF2的外角平分线引垂线,垂足为P,求点P的轨迹19.(12分)若r(x):sin xcos xm,s(x):x2mx10.已知xR,r(x)为假命题且s(x)为真命题,求实

    5、数m的取值范围20(12分)已知椭圆1 (ab0)的一个顶点为A(0,1),离心率为,过点B(0,2)及左焦点F1的直线交椭圆于C,D两点,右焦点设为F2.(1)求椭圆的方程;(2)求CDF2的面积21.(12分)已知函数f(x)x3bx2cxd的图象过点P(0,2),且在点M(1,f(1)处的切线方程为6xy70.(1)求函数yf(x)的解析式;(2)求函数yf(x)的单调区间22(12分)已知f(x)x32ax23x (aR),(1)若f(x)在区间(1,1)上为减函数,求实数a的取值范围;(2)试讨论yf(x)在(1,1)内的极值点的个数模块综合检测(B) 答案1D2A因为|a|0a0或

    6、a0|a|0,但|a|0 a0,所以“a0”是“|a|0”的充分不必要条件3C4A由题意知c4,焦点在x轴上,又e2,a2,b2c2a2422212,双曲线方程为1.5C设椭圆的另一焦点为F,由椭圆的定义知|BA|BF|2,且|CF|AC|2,所以ABC的周长|BA|BC|AC|BA|BF|CF|AC|4.6D与双曲线y21有公共渐近线方程的双曲线方程可设为y2,由过点(2,2),可解得2.所以所求的双曲线方程为1.7By3x26x,ky|x13,切线方程为y13(x1),y3x2.8A由题意知x0,若f(x)2x0,则00),则经过该点的切线的斜率为k2x0,根据题意得,2x01,x01或x

    7、0,又x00,x01,此时y01,切点的坐标为(1,1),最小距离为.15解析对,a,b,c,d成等比数列,则adbc,反之不一定,故正确;对,令x5,y6,则xy1,所以该命题为假命题,故正确;对,pq假时,p,q至少有一个为假命题,故错误16(1,3解析设|PF2|m,则2a|PF1|PF2|m,2c|F1F2|PF1|PF2|3m.e3,又e1,离心率的取值范围为(1,317解命题p:方程x2mx10有两个不等的负实根m2.命题q:方程4x24(m2)x10无实根16(m2)21616(m24m3)01m3.“p或q”为真,“p且q”为假,p为真、q为假或p为假、q为真,则或,解得m3或

    8、1b0),F1,F2是它的两个焦点,Q为椭圆上任意一点,QP是F1QF2中的F1QF2的外角平分线(如图),连结PO,过F2作F2PQP于P并延长交F1Q的延长线于H,则P是F2H的中点,且|F2Q|QH|,因此|PO|F1H|(|F1Q|QH|)(|F1Q|F2Q|)a,点P的轨迹是以原点为圆心,以椭圆半长轴长为半径的圆(除掉两点即椭圆与x轴的交点)19解由于sin xcos xsin,xR,r(x)为假命题即sin xcos xm恒不成立m. 又对xR,s(x)为真命题x2mx10对xR恒成立则m240,即2m2. 故xR,r(x)为假命题,且s(x)为真命题,应有m0,直线与椭圆有两个公

    9、共点,设为C(x1,y1),D(x2,y2),则,|CD|x1x2|,又点F2到直线BF1的距离d,故SCDF2|CD|d.21解(1)由f(x)的图象经过P(0,2)知d2,f(x)x3bx2cx2,f(x)3x22bxc.由在点M(1,f(1)处的切线方程是6xy70,知6f(1)70,即f(1)1,f(1)6.即解得bc3.故所求的解析式是f(x)x33x23x2.(2)f(x)3x26x3,令3x26x30,即x22x10.解得x11,x21.当x1时,f(x)0.当1x1时,f(x)时,存在x0(1,1),使f(x0)0,f(x)2x24ax3开口向上,在(1,x0)内,f(x)0,在(x0,1)内,f(x)0,即f(x)在(1,x0)内单调递增,在(x0,1)内单调递减,f(x)在(1,1)内有且仅有一个极值点,且为极大值点当a时,存在x0(1,1)使f(x0)0.f(x)2x24ax3开口向上,在(1,x0)内f(x)0.即f(x)在(1,x0)内单调递减,在(x0,1)内单调递增,f(x)在(1,1)内有且仅有一个极值点,且为极小值点当a时,由(1)知f(x)在(1,1)内递减,没有极值点综上,当a或a时,f(x)在(1,1)内的极值点的个数为1,当a时,f(x)在(1,1)内的极值点的个数为0.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《创新设计-课堂讲义》2016-2017学年高中数学(人教版选修1-1)课时作业:模块综合检测(B) WORD版含答案.docx
    链接地址:https://www.ketangku.com/wenku/file-787704.html
    相关资源 更多
  • 专题10.4 二项式定理(原卷版).docx专题10.4 二项式定理(原卷版).docx
  • 专题10.3 两个计数原理、排列与组合(解析版).docx专题10.3 两个计数原理、排列与组合(解析版).docx
  • 专题10.3二项式定理及其应用(原卷版).docx专题10.3二项式定理及其应用(原卷版).docx
  • 专题10.2 统计案例(解析版).docx专题10.2 统计案例(解析版).docx
  • 专题10.2 统计案例(原卷版).docx专题10.2 统计案例(原卷版).docx
  • 专题10.2排列组合问题(解析版).docx专题10.2排列组合问题(解析版).docx
  • 专题10.10 统计与概率(2021-2023年)真题训练(解析版).docx专题10.10 统计与概率(2021-2023年)真题训练(解析版).docx
  • 专题10.1 分类加法计数原理与分步乘法计数原理(原卷版).docx专题10.1 分类加法计数原理与分步乘法计数原理(原卷版).docx
  • 专题10.1 分类加法计数原理与分步乘法计数原理(解析版).docx专题10.1 分类加法计数原理与分步乘法计数原理(解析版).docx
  • 专题10-定语从句-冲刺2023年高考每天100道语法小题限时狂练.docx专题10-定语从句-冲刺2023年高考每天100道语法小题限时狂练.docx
  • 专题10-书面表达常用词汇和高级词汇 -2023年高考英语真题分项功能词汇专项突破.docx专题10-书面表达常用词汇和高级词汇 -2023年高考英语真题分项功能词汇专项突破.docx
  • 专题10-19天晨读 晚练四步轻松掌握高考英语核心词汇词形转换.docx专题10-19天晨读 晚练四步轻松掌握高考英语核心词汇词形转换.docx
  • 专题10-12 新民主主义革命时期(好题过关)(原卷版).docx专题10-12 新民主主义革命时期(好题过关)(原卷版).docx
  • 专题10--《2021届高考英语阅读理解完型填空600高频单词20练(基础练 拔高练)》(10).docx专题10--《2021届高考英语阅读理解完型填空600高频单词20练(基础练 拔高练)》(10).docx
  • 专题10 阅读还原(杭州专用)-2023年中考英语逆袭冲刺(三年真题热门考点提炼 名校最新模拟速递)专训(浙江省专用).docx专题10 阅读还原(杭州专用)-2023年中考英语逆袭冲刺(三年真题热门考点提炼 名校最新模拟速递)专训(浙江省专用).docx
  • 专题10 阅读表达-8年(2014-2021)苏州中考英语真题分析.docx专题10 阅读表达-8年(2014-2021)苏州中考英语真题分析.docx
  • 专题10 阅读理解应用文(解析版).docx专题10 阅读理解应用文(解析版).docx
  • 专题10 阅读理解应用文(原卷版).docx专题10 阅读理解应用文(原卷版).docx
  • 专题10 阅读理解之说明文(名校最新期末真题)-2022-2023学年七年级英语下学期期末复习查缺补漏冲刺满分(牛津译林版).docx专题10 阅读理解之说明文(名校最新期末真题)-2022-2023学年七年级英语下学期期末复习查缺补漏冲刺满分(牛津译林版).docx
  • 专题10 阅读理解之说明文-2021年高考英语题型大冲关(上海专用).docx专题10 阅读理解之说明文-2021年高考英语题型大冲关(上海专用).docx
  • 专题10 阅读理解之应用文(名校最新期末真题)-2022-2023学年八年级英语下学期期末考点大串讲(牛津译林版).docx专题10 阅读理解之应用文(名校最新期末真题)-2022-2023学年八年级英语下学期期末考点大串讲(牛津译林版).docx
  • 专题10 阅读理解之应用文-2024年高考英语二轮热点题型归纳与变式演练(新高考通用)(解析版).docx专题10 阅读理解之应用文-2024年高考英语二轮热点题型归纳与变式演练(新高考通用)(解析版).docx
  • 专题10 阅读理解20篇(名校最新期末真题)-2021-2022学年八年级英语下学期期末复习查缺补漏冲刺满分(人教版).docx专题10 阅读理解20篇(名校最新期末真题)-2021-2022学年八年级英语下学期期末复习查缺补漏冲刺满分(人教版).docx
  • 专题10 阅读填表(5空)-冲刺2022年中考英语必考题型终极押题(江苏通用).docx专题10 阅读填表(5空)-冲刺2022年中考英语必考题型终极押题(江苏通用).docx
  • 专题10 阅读回答问题10篇-2023届九年级英语名校真题分类汇编(江苏专用).docx专题10 阅读回答问题10篇-2023届九年级英语名校真题分类汇编(江苏专用).docx
  • 专题10 阅读回答问题-备战2022中考英语全国名校最新模拟试题分类汇编.docx专题10 阅读回答问题-备战2022中考英语全国名校最新模拟试题分类汇编.docx
  • 专题10 阅读回答问题-备战2022中考英语全国名校最新模拟试题分类汇编(1).docx专题10 阅读回答问题-备战2022中考英语全国名校最新模拟试题分类汇编(1).docx
  • 专题10 问鼎中考宾语从句在手-【口袋书】2022年中考英语背诵手册(牛津译林版).docx专题10 问鼎中考宾语从句在手-【口袋书】2022年中考英语背诵手册(牛津译林版).docx
  • 专题10 透过语境巧记高考英语3500词.docx专题10 透过语境巧记高考英语3500词.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1