分享
分享赚钱 收藏 举报 版权申诉 / 16

类型专题6.10 反比例函数的应用(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx

  • 上传人:a****
  • 文档编号:835763
  • 上传时间:2025-12-16
  • 格式:DOCX
  • 页数:16
  • 大小:604.52KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题6.10 反比例函数的应用知识讲解-2022-2023学年九年级数学上册基础知识专项讲练北师大版 专题 6.10 反比例 函数 应用 知识 讲解 2022 2023 学年 九年级 数学 上册
    资源描述:

    1、专题6.10 反比例函数的应用(知识讲解)【学习目标】1. 能根据实际问题中的条件确定反比例函数的解析式,并能结合图象加深对问题的理解.2根据条件求出函数解析式,运用学过的函数知识解决反比例函数的应用问题,体会数学与现实生活的紧密联系,增强应用意识.【要点梳理】要点一、利用反比例函数解决实际问题1. 基本思路:建立函数模型,即在实际问题中求得函数解析式,然后应用函数的图象和性质等知识解决问题.2. 一般步骤如下:(1)审清题意,根据常量、变量之间的关系,设出函数解析式,待定的系数用字母表示.(2)由题目中的已知条件,列出方程,求出待定系数.(3)写出函数解析式,并注意解析式中变量的取值范围.(

    2、4)利用函数解析式、函数的图象和性质等去解决问题.要点二、反比例函数在其他学科中的应用1. 当圆柱体的体积一定时,圆柱的底面积是高的反比例函数;2. 当工程总量一定时,做工时间是做工速度的反比例函数;3. 在使用杠杆时,如果阻力和阻力臂不变,则动力是动力臂的反比例函数;4. 电压一定,输出功率是电路中电阻的反比例函数.要点三、反比例函数在与几何综合应用反比例函数与几何的综合应用是是历年来中考的热点,既有本学科知识的综合,也有与其他学科知识的综合,题型既选择、填空,也有解答题类型,而这类题型出现于最后一道题的概率最多,考查学生的综合分析和应用知识的能力。解反比例函数与几何图形的综合题,一般先设出

    3、几何图形中的未知数,然后结合函数的图像用含未知数的式子表示出几何图形与图像的交点坐标,再由函数解析式及几何图形的性质写出含未知数及待求字母系数的当成(组),解方程(组)即可得所求几何图形的未知量或函数解析式中待定字母的值。这类型的题目主要包括反比例函数与三角形的综合、反比例函数与四边形(平行四边形、矩形、菱形)的综合、反比例函数与正方形的综合、反比例函数与圆的综合等四种题型。【典型例题】类型一、反比例函数实际问题与图象1如图,某校劳动小组计划利用已有的一堵长为6m的墙,用篱笆围成一个面积为的矩形劳动基地,边的长不超过墙的长度,在边上开设宽为1m的门(门不需要消耗篱笆)设的长为(m),的长为(m

    4、)(1) 求关于的函数表达式(2) 若围成矩形劳动基地三边的篱笆总长为10m,求和的长度(3) 若和的长都是整数(单位:m),且围成矩形劳动基地三边的篱笆总长小于10m,请直接写出所有满足条件的围建方案【答案】(1)(2)(3)或【分析】(1)利用矩形的面积计算公式可得出xy12,进而可得出:;(2)根据篱笆总长和门的长表示出AB与BC,列出方程求出即可;(3)由x,y均为整数,围成矩形劳动基地三边的篱笆总长小于10m,可得出x的值,进而可得出各围建方案(1)解:依题意得:xy12,又墙长为6m,y关于x的函数表达式为:(2)解:依题意得:,或,;(3)解:依题意得:,和的长都是正整数,或,则

    5、满足条件的围建方案为:或【点拨】本题考查了根据实际问题列出反比例函数关系式,根据各数量之间的关系,找出y关于x的函数关系式以及根据x,y均为整数找出x,y的值是解题的关键举一反三:【变式1】 已知学生注意力指标y随时间x(分钟)变化的函数图象如下图所示,当和时,函数图象是线段;当时,图象是反比例函数的一部分,BCADx轴(1) 求点D坐标;(2) 当x满足什么条件时,学生注意力指标不低于30【答案】(1)(45,20)(2)当4x30时,学生注意力指标不低于30【分析】(1)求出反比例函数解析式,即可求解;(2)先求出直线AB的解析式,可得y30时,x的取值范围,再由反比例函数可得y30时,x

    6、的取值范围,即可求解(1)解:设当时,反比例函数解析式为,把点C(20,45)代入得:,解得:k=900,反比例函数解析式为,当x=45时,D(45,20);(2)解:根据题意得:A(0,20),设当0x2000,这种摆放方式不安全【点拨】本题考查反比例函数的应用,解题的关键是读懂题意,能列出函数关系式举一反三:【变式1】在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,二氧化碳的密度也会随之改变,密度(单位:kg/m3)是体积V(单位:m3)的反比例函数,它的图象如图所示(1) 求与V之间的函数关系式:(2) 求当m3时二氧化碳的密度 【答案】(1)(2)1kg/m3

    7、【分析】(1)由图象可知,反比例函数图象经过点(5,2),利用待定系数法求出函数解析式;(2)运用这个关系式解答实际问题,把v=10m3代入函数解析式即可求解(1)解:设密度与体积V的反比例函数关系式为,把点代人解,得,与V的反比例函数关系式为(2)解:当v=10m3时,P=1(kg/m3),当V=10m3时二氧化碳的密度为1kg/m3【点拨】本题主要考查图象的识别和待定系数法求函数解析式从图象上观察得出点(5,2)在函数图象上是解题的关键【变式2】某种气球内充满了一定质量的气体,当温度不变时,气球内气体的压强P(Pa)与气球体积V()之间成反比例关系,其图像如图所示(1) 求P与V之间的函数

    8、关系式;(2) 当时,求P的值;(3) 当气球内的气压大于40000Pa时,气球将爆炸,为确保气球不爆炸,气球的体积应不小于多少?【答案】(1)P=(2)千帕(3)不少于m3【分析】(1)设出反比例函数的解析式,代入点A的坐标,即可解决;(2)由题意可得V=1.8m3,代入到解析式中即可求解;(3)为了安全起见,P40000kPa,列出关于V的不等式,解不等式,即可解决(1)解:设这个函数解析式为:P=,代入点A的坐标(1.5,16000)得,=16000,k=24000,这个函数的解析式为P=;(2)由题可得,V=1.8m3,P=(kPa),气球内气体的压强是千帕;(3)气球内气体的压强大于

    9、144kPa时,气球将爆炸,为了安全起见,P40000kPa,40000,Vm3,为了安全起见,气球的体积不少于m3【点拨】本题考查了反比例函数的应用,根据题意,利用待定系数法求出解析式是解决此题的突破口类型三、反比例函数与几何综合应用3 如图1,一次函数与反比例函数交于A,B两点,点A的横坐标为3(1) 求出反比例函数的表达式及点B的坐标;(2) 当y1y2时,直接写出x的取值范围;(3) 如图2,在第二象限中存在一点P,使得四边形PAOB是菱形,求菱形PAOB的面积 【答案】(1)(2)x-3或0x1;(3)8【分析】(1)先求出点A的坐标,进而求出反比例函数的表达式,最后求出点B的坐标;

    10、(2)由图像直接得出答案;(3)先判断出OPAB,再求出AB和OH,最后用面积公式求解,即可求出答案(1)解:点A在一次函数y1=x+2的图像上,且点A的横坐标为-3,y=-1,A(-3,-1),点A在反比例函数的图像上,k=-3(-1)=3,反比例函数的表达式为,联立解得,或,B(1,3);(2)由(1)知,A(-3,-1),B(1,3),由图像知,当y1y2时,x的取值范围为x-3或0x1;(3)如图,连接OP,交AB于H,四边形PAOB是菱形,OPAB,AH=BH,由(1)知,A(-3,-1),B(1,3),AB=,点H(-1,1),OH=,S菱形PAOB=2SAOB=2ABOH=ABO

    11、H=8【点拨】本题考查了待定系数法求反比例函数解析式,菱形的性质,勾股定理求两点间的距离,三角形的面积公式,作出辅助线求出OH是解本题的关键举一反三:【变式1】如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作ABx轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P(1)求反比例函数y=的表达式;(2)求点B的坐标;(3)求OAP的面积【答案】(1)反比例函数解析式为y=;(2)点B的坐标为(9,3);(3)OAP的面积=5【分析】(1)将点A的坐标代入解析式求解可得;(2)利用勾股定理求得AB=OA=5,由ABx轴即可得点B的坐标;(3)先根据点B

    12、坐标得出OB所在直线解析式,从而求得直线与双曲线交点P的坐标,再利用割补法求解可得解:(1)将点A(4,3)代入y=,得:k=12,则反比例函数解析式为y=;(2)如图,过点A作ACx轴于点C,则OC=4、AC=3,OA=5,ABx轴,且AB=OA=5,点B的坐标为(9,3);(3)点B坐标为(9,3),OB所在直线解析式为y=x,由可得点P坐标为(6,2),(负值舍去),过点P作PDx轴,延长DP交AB于点E,则点E坐标为(6,3),AE=2、PE=1、PD=2,则OAP的面积=(2+6)36221=5【点拨】本题考查了反比例函数与几何图形综合,一次函数与反比例函数综合,熟练掌握反比例函数图

    13、象上点的坐标特征、正确添加辅助线是解题的关键.【变式2】如图,四边形ABCD的四个顶点分别在反比例函数与(x0,0mn)的图象上,对角线BD/y轴,且BDAC于点P已知点B的横坐标为4(1)当m=4,n=20时若点P的纵坐标为2,求直线AB的函数表达式若点P是BD的中点,试判断四边形ABCD的形状,并说明理由(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由【答案】(1);四边形是菱形,理由见分析;(2)四边形能是正方形,理由见分析,m+n=32.【分析】(1)先确定出点A,B坐标,再利用待定系数法即可得出结论;先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;(2)先确定出B(4,),D(4,),进而求出点P的坐标,再求出A,C坐标,最后用AC=BD,即可得出结论解:(1)如图1,反比例函数为,当时,当时,设直线的解析式为, , ,直线的解析式为;四边形是菱形,理由如下:如图2,由知,轴,点是线段的中点,当时,由得,由得,四边形为平行四边形,四边形是菱形;(2)四边形能是正方形,理由:当四边形是正方形,记,的交点为,,当时, ,.【点拨】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题6.10 反比例函数的应用(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx
    链接地址:https://www.ketangku.com/wenku/file-835763.html
    相关资源 更多
  • 人教版(2019)必修第三册9-4 静电的防止与利用 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册9-4 静电的防止与利用 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册9-3 电场 电场强度 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册9-3 电场 电场强度 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册9-2 库仑定律 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册9-2 库仑定律 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册9-1 电荷 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册9-1 电荷 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册13-5 能量量子化 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册13-5 能量量子化 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册13-4 电磁波的发现及应用 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册13-4 电磁波的发现及应用 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册13-3 电磁感应现象及其应用 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册13-3 电磁感应现象及其应用 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册13-2 磁感应强度 磁通量 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册13-2 磁感应强度 磁通量 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册13-1 磁场 磁感线 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册13-1 磁场 磁感线 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册12-3 实验:电源电动势和内阻的测量 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册12-3 实验:电源电动势和内阻的测量 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册12-2 闭合电路的欧姆定律 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册12-2 闭合电路的欧姆定律 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册11-5 实验:练习使用多用电表 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册11-5 实验:练习使用多用电表 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册11-4 串联电路和并联电路 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册11-4 串联电路和并联电路 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册11-3 实验:导体电阻率的测量 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册11-3 实验:导体电阻率的测量 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册11-2 导体的电阻 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册11-2 导体的电阻 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册10-5 带电粒子在电场中的运动 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册10-5 带电粒子在电场中的运动 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册10-3 电势差与电场强度的关系 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册10-3 电势差与电场强度的关系 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册10-2 电势差 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册10-2 电势差 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册10-1 电势能与电势 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册10-1 电势能与电势 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修二 交通运输布局对区域发展的影响 教案.docx人教版(2019)必修二 交通运输布局对区域发展的影响 教案.docx
  • 人教版(2017)八年级上册历史 6.18从九一八事变到西安事变 同步测试.docx人教版(2017)八年级上册历史 6.18从九一八事变到西安事变 同步测试.docx
  • 人教版(2016)七年级上册历史 3.9秦统一中国 同步测试.docx人教版(2016)七年级上册历史 3.9秦统一中国 同步测试.docx
  • 人教版(2016)七年级上册历史 3.15两汉的科技和文化 同步测试.docx人教版(2016)七年级上册历史 3.15两汉的科技和文化 同步测试.docx
  • 人教版(2016)七年级上册历史 3.14沟通中外文明的丝绸之路 同步测试.docx人教版(2016)七年级上册历史 3.14沟通中外文明的丝绸之路 同步测试.docx
  • 人教版(2016)七年级上册历史 2.8百家争鸣 同步测试.docx人教版(2016)七年级上册历史 2.8百家争鸣 同步测试.docx
  • 人教版(2016)七年级上册历史 2.7战国时期的社会变化 同步测试.docx人教版(2016)七年级上册历史 2.7战国时期的社会变化 同步测试.docx
  • 人教版(2016)七年级上册历史 2.6动荡的春秋时期 同步测试.docx人教版(2016)七年级上册历史 2.6动荡的春秋时期 同步测试.docx
  • 人教版(2016)七年级上册历史 2.5青铜器与甲骨文 同步测试.docx人教版(2016)七年级上册历史 2.5青铜器与甲骨文 同步测试.docx
  • 人教版(2016)七年级上册历史 2.4早期国家的产生和发展 同步测试.docx人教版(2016)七年级上册历史 2.4早期国家的产生和发展 同步测试.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1