分享
分享赚钱 收藏 举报 版权申诉 / 31

类型北京市2001-2022年中考数学试题分类解析 专题5 数量和位置变化.docx

  • 上传人:a****
  • 文档编号:933066
  • 上传时间:2025-12-18
  • 格式:DOCX
  • 页数:31
  • 大小:1.49MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    北京市2001-2022年中考数学试题分类解析 专题5 数量和位置变化 北京市 2001 2022 年中 数学试题 分类 解析 专题 数量 位置 变化
    资源描述:

    1、北京市2022-2022年中考数学试题分类解析 专题5 数量和位置变化一、 选择题1. (2022年北京市4分)已知点P(1,3),那么与点P关于原点对称的点的坐标是【 】A(1,3) B(1,3) C(1,3) D(3,1)2. (2022年北京市4分)三峡工程在6月1日于6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间,假设水库水位匀速上升,那么下列图象中,能正确反映这10天水位h(米)随时间t(天)变化的是【 】3. (2022年北京市4分)如下图,在平行四边形ABCD中,DAB=60,AB=5,BC=3,点P从起点D出发,沿DC、CB向终点B匀速运动设点P所走过

    2、的路程为x,点P所经过的线段与线段AD、AP所围成图形的面积为y,y随x的变化而变化在下列图象中,能正确反映y与x的函数关系的是【 】4. (2022年北京市大纲4分)点P(3,4)关于原点对称的点的坐标是【 】A、(3,4) B、(3,4) C、(4,3) D、(4,3)5. (2022年北京市大纲4分)如图,在梯形ABCD中,ADBC,B=90,AD=1,AB=,BC=2,P是BC边上的一个动点(点P与点B不重合),DEAP于点E。设AP=x,DE=y。在下列图象中,能正确反映y与x的函数关系的是【 】x。故选B。6. (2022年北京市课标4分)在函数中,自变量的取值范围是【 】7. (

    3、2022年北京市4分)如图在RtABC中,ACB=90,BAC=30,AB=2,D是AB边上的一个动点(不与点A、B重合),过点D作CD的垂线交射线CA于点E设AD=,CE=,则下列图象中,能表示与x的函数关系图象大致是【 】8. (2022年北京市4分) 小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒他的教练选择了一个固定的位置观察小翔的跑步过程设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的【 】二、填空题1. (2022年北京市4分)函数的自变量x的取值范

    4、围为 【答案】。2. (2022年北京市4分)在函数中,自变量的取值范围是 x3。3. (2022年北京市4分) 在函数中,自变量x的取值范围是 。4. (2022年北京市4分)在函数中,自变量x的取值范围是 5. (2022年北京市4分)函数中,自变量x的取值范围是 使在实数范围内有意义,必须。6. (2022年北京市4分)在函数中,自变量的取值范围是 三、解答题1. (2022年北京市8分)如图,在ABC中,C=90,P为AB上一点,且点P不与点A重合,过点P作PEAB交AC边于E点,点E不与点C重合,若AB=10,AC=8,设AP的长为x,四边形PECB的周长为y,求y与x之间的函数关系

    5、式2. (2022年北京市12分)已知:二次函数的图象与y轴交于点C,且与x轴的正半轴交于A、B两点(点A在点B左侧)若A、B两点的横坐标为整数,(1)确定这个二次函数的解析式并求它的顶点坐标;(2)若点D的坐标是(0,6),点P(t,0)是线段AB上的一个动点,它可与点A重合,但不与点B重合设四边形PBCD的面积为S,求S与t的函数关系式;(3)若点P与点A重合,得到四边形ABCD,以四边形ABCD的一边为边,画一个三角形,使它的面积等于四边形ABCD的面积,并注明三角形高线的长再利用“等底等高的三角形面积相等”的知识,画一个三角形,使它的面积等于四边形ABCD的面积(画示意图,不写计算和证

    6、明过程)【考点】二次函数综合题,二次函数的性质,曲线上点的坐标与方程的关系,一元二次方程根的判别式,方程的整数根,整除和奇偶性问题,等底等高的三角形面积,分类思想的应用。3. (2022年北京市9分)已知:在平面直角坐标系xOy中,一次函数y=kx4k的图象与x轴交于点A,抛物线y=ax2+bx+c经过O、A两点(1)试用含a的代数式表示b;(2)设抛物线的顶点为D,以D为圆心,DA为半径的圆被x轴分为劣弧和优弧两部分若将劣弧沿x轴翻折,翻折后的劣弧落在D内,它所在的圆恰与OD相切,求D半径的长及抛物线的解析式;(3)设点B是满足(2)中条件的优弧上的一个动点,抛物线在x轴上方的部分上是否存在

    7、这样的点P,使得POA=OBA?若存在,求出点P的坐标;若不存在,请说明理由的圆与D关于x轴对称,设它的圆心为D。4. (2022年北京市大纲9分)已知:抛物线y=x2+mx+2m2(m0)与x轴交于A、B两点,点A在点B的左边,C是抛物线上一个动点(点C与点A、B不重合),D是OC的中点,连结BD并延长,交AC于点E。(1)用含m的代数式表示点A、B的坐标;(2)求的值;(3)当C、A两点到y轴的距离相等,且时,求抛物线和直线BE的解析式。【答案】解:(1)抛物线y=x2+mx+2m2(m0)与x轴交于A、B两点,关于x的方程x2+mx+2m2=0有两个不相等的实数根x1和x2,解得x1=m

    8、,x2=2m。【分析】(1)由y=0,得出的一元二次方程的解就是A、B两点的横坐标由此可求出A、B的坐标。(2)通过构建相似三角形求解,过O作OGAC交BE于G,那么可得出两组相似三角形:5. (2022年北京市课标5分)在平面直角坐标系xOy中,直线y=x绕点O顺时针旋转90得到直线l,直线l与反比例函数的图象的一个交点为A(a,3),试确定反比例函数的解析式6. (2022年北京市课标8分)已知抛物线与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点(1)求此抛物线的解析式;(2)若点D为线段OA的一个三等分点,求直线DC的解析式;(3)若一个动点P自OA的中点M出发,

    9、先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长 (3)根据轴对称的性质,得点M关于x轴的对称点和点A关于抛物线对称轴x=3的对称点的连线的长就是所求点P运动的最短总路径的长,与x轴的交点为所求E点,与直线x=3的交点为所求F点。求出的解析式即可求得点E、F的坐标,由勾股定理即可求得的长即点P运动的最短总路径的长。7. (2022年北京市5分)在平面直角坐标系xOy中,OEFG为正方形,点F的坐标为(1,1)。将一个最短边长大于的直角三角形纸片的直角顶点放在对角线FO上。(1)如图,当三角

    10、形纸片的直角顶点与点F重合,一条直角边落在直线FO上时,这个三角形纸片与正方形OEFG重叠部分(即阴影部分)的面积为 ;(2)若三角形纸片的直角顶点不与点O,F重合,且两条直角边与正方形相邻两边相交,当这个三角形纸片与正方形OEFG重叠部分的面积是正方形面积的一半时,试确定三角形纸片直角顶点的坐标(不要求写出求解过程),并画出此时的图形。8. (2022年北京市7分)在平面直角坐标系xOy中,抛物线经过P(,5),A(0,2)两点。(1)求此抛物线的解析式;(2)设抛物线的顶点为B,将直线AB沿y轴向下平移两个单位得到直线l,直线l与抛物线的对称轴交于C点,求直线l的解析式;(3)在(2)的条

    11、件下,求到直线OB,OC,BC距离相等的点的坐标。点M2与点A重合,点M2的坐标为(0,2);点M3与点A关于x轴对称,点M3的坐标为(0,2);9. (2022年北京市7分)已知关于的一元二次方程有实数根,为正整数.(1)求的值;(2)当此方程有两个非零的整数根时,将关于的二次函数的图象向下平移8个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在轴下方的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线与此图象有两个公共点时,的取值范围. 10. (2022年北京市7分)如图,在平面直角坐标系xOy中,ABC三个顶点的坐标

    12、分别为A(6,0),B(6,0),C(0,),延长AC到点D,使CD=AC,过点D作DEAB交BC的延长线于点E(1)求D点的坐标;(2)作C点关于直线DE的对称点F,分别连接DF、EF,若过B点的直线y=kx+b将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;(3)设G为y轴上一点,点P从直线y=kx+b与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短(要求:简述确定G点位置的方法,但不要求证明)直线BM将四边形CDFE分成周长相等的两个四边形。由点B(6,0

    13、),点M(0,)在直线y=kx+b上,可得直线BM的解析式为。(3)确定G点位置的方法:过A点作AHBM于点H,则AH与y轴的交点为所求的G点。11. (2022年北京市7分)已知反比例函数的图象经过点A(,1).(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转300得到线段OB,判断点B是否在此反比例函数的图象上,并说明理由;(3)已知点P(,)也在此反比例函数的图象上(其中),过P点作x轴的垂线,交x轴于点M.若线段PM上存在一点Q,使得OQM的面积是,设Q点的纵坐标为,求的值.将线段OA绕O点顺时针旋转300得到线段OB,AOB=300,OB=OA=2。

    14、BOC=600。过点B作x轴的垂线交x轴于点D,在RtBOD中,BD=OBsinBOD=,OD=OB=1。B点坐标为(1,)。将x=1代入中,得y=,点B(1,)在反比例函数的图象上。(3)由得xy=,点P(m,m6)在反比例函的图象上,其中m0,m(m6)=,即m22m1=0。 PQx轴,Q点的坐标为(m,n)。OQM的面积是,OMQM=。m0,mn=1。m2n22mn2n2=0,n22n=1,n22n+9=8。【考点】反比例函数综合题,待定系数法,曲线上点的坐标与方程的关系,旋转的性质,锐角三角函数定义,特殊角的三角函数值,求代数式的值,整体思想的应用。12. (2022年北京市8分)在平

    15、面直角坐标系中,抛物线与轴的交点分别为原点O和点A,点B(2,)在这条抛物线上.(1)求B点的坐标;(2)点P在线段OA上,从O点出发向A点运动,过P点作轴的垂线,与直线OB交于点E,延长PE到点D,使得ED=PE,以PD为斜边,在PD右侧作等腰直角三角形PCD(当P点运动时,C点、D点也随之运动).当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长;若P点从O点出发向A点作匀速运动,速度为每秒1个单位,同时线段OA上另一点Q从A点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动).过Q点作轴的垂线,与直线AB交于点F,延长QF到点M,使得FM=Q

    16、F,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当Q点运动时,M点、N点也随之运动).若P点运动到秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻的值.【答案】解:(1)抛物线经过原点,=0,解得m1=1,m2=2。由题意知m1,m=2。抛物线的解析式为。MQ=2t。PQ=MQ=CQ=2t。t2t2t=10。13. (2022年北京市5分)操作与探究: (1)对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P.点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段AB,其中点A,B的对应点分别为A,B如图1,若点

    17、A表示的数是,则点A表示的数是 ;若点B表示的数是2,则点B表示的数是 ;已知线段AB上的点E经过上述操作后得到的对应点E与点E重合,则点E表示的数是 ; (2)如图2,在平面直角坐标系xoy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一种实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m0,n0),得到正方形ABCD及其内部的点,其中点A,B的对应点分别为A,B。已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F与点F重合,求点F的坐标。14. (2022年北京市7分)已知二次函数在和时的函数值相等。一、 求二次函数的解析式;二、 若一次

    18、函数的图象与二次函数的图象都经过点A,求m和k的值;三、 设二次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移个单位后得到的图象记为C,同时将(2)中得到的直线向上平移n个单位。请结合图象回答:当平移后的直线与图象G有公共点时,n的取值范围。15. (2022年北京市8分)在平面直角坐标系xoy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义: 若x1x2y1y2,则点P1与点P2的“非常距离”为x1x2; 若x1x2y1y2,则点P1与点P2的“非常距离”为y1y2. 例如:点P1(1,2),点P2(3,5),因为1325,所以点P1与点P2的“非常距离”为25=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点)。 (1)已知点,B为y轴上的一个动点, 若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标; 直接写出点A与点B的“非常距离”的最小值; (2)已知C是直线上的一个动点, 如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标; 如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标。

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:北京市2001-2022年中考数学试题分类解析 专题5 数量和位置变化.docx
    链接地址:https://www.ketangku.com/wenku/file-933066.html
    相关资源 更多
  • 2013届高考苏教版化学一轮复习课件:专题十第四单元 有机高分子化合物有机合成与推断.ppt2013届高考苏教版化学一轮复习课件:专题十第四单元 有机高分子化合物有机合成与推断.ppt
  • 2013届高考苏教版化学一轮复习课件:专题十第三单元 生命活动的物质基础.ppt2013届高考苏教版化学一轮复习课件:专题十第三单元 生命活动的物质基础.ppt
  • 2013届高考苏教版化学一轮复习课件:专题六第一单元 化学反应中的热效应.ppt2013届高考苏教版化学一轮复习课件:专题六第一单元 化学反应中的热效应.ppt
  • 2013届高考苏教版化学一轮复习课件:专题八第四单元 难溶电解质的沉淀溶解平衡.ppt2013届高考苏教版化学一轮复习课件:专题八第四单元 难溶电解质的沉淀溶解平衡.ppt
  • 2013届高考苏教版化学一轮复习课件:专题八第一单元 弱电解质的电离平衡.ppt2013届高考苏教版化学一轮复习课件:专题八第一单元 弱电解质的电离平衡.ppt
  • 2013届高考苏教版化学一轮复习课件:专题五第三单元 微粒之间的相互作用力.ppt2013届高考苏教版化学一轮复习课件:专题五第三单元 微粒之间的相互作用力.ppt
  • 2013届高考苏教版化学一轮复习课件:专题九第二单元 有机物的结构、分类和命名.ppt2013届高考苏教版化学一轮复习课件:专题九第二单元 有机物的结构、分类和命名.ppt
  • 2013届高考苏教版化学一轮复习课件:专题七第二单元 化学反应的方向和限度.ppt2013届高考苏教版化学一轮复习课件:专题七第二单元 化学反应的方向和限度.ppt
  • 2013届高考苏教版化学一轮复习课件:专题七第三单元 化学平衡的移动.ppt2013届高考苏教版化学一轮复习课件:专题七第三单元 化学平衡的移动.ppt
  • 2013届高考苏教版化学一轮复习课件:专题七第一单元 化学反应速率.ppt2013届高考苏教版化学一轮复习课件:专题七第一单元 化学反应速率.ppt
  • 2013届高考苏教版化学一轮复习课件:专题9第2单元 有机物的结构、分类和命名.ppt2013届高考苏教版化学一轮复习课件:专题9第2单元 有机物的结构、分类和命名.ppt
  • 2013届高考苏教版化学一轮复习课件:专题8第3单元 盐类的水解.ppt2013届高考苏教版化学一轮复习课件:专题8第3单元 盐类的水解.ppt
  • 2013届高考苏教版化学一轮复习课件:专题7第2单元 化学反应的方向和限度.ppt2013届高考苏教版化学一轮复习课件:专题7第2单元 化学反应的方向和限度.ppt
  • 2013届高考苏教版化学一轮复习课件:专题7 化学反应速率与化学平衡亮点专题集锦(7).ppt2013届高考苏教版化学一轮复习课件:专题7 化学反应速率与化学平衡亮点专题集锦(7).ppt
  • 2013届高考苏教版化学一轮复习课件:专题6第1单元 化学反应中的热效应.ppt2013届高考苏教版化学一轮复习课件:专题6第1单元 化学反应中的热效应.ppt
  • 2013届高考苏教版化学一轮复习课件:专题5第3单元 微粒之间的相互作用力.ppt2013届高考苏教版化学一轮复习课件:专题5第3单元 微粒之间的相互作用力.ppt
  • 2013届高考苏教版化学一轮复习课件:专题5第1单元 人类对原子结构的认识.ppt2013届高考苏教版化学一轮复习课件:专题5第1单元 人类对原子结构的认识.ppt
  • 2013届高考苏教版化学一轮复习课件:专题3第3单元 含硅矿物与信息材料.ppt2013届高考苏教版化学一轮复习课件:专题3第3单元 含硅矿物与信息材料.ppt
  • 2013届高考苏教版化学一轮复习课件:专题2第2单元 氧化还原反应.ppt2013届高考苏教版化学一轮复习课件:专题2第2单元 氧化还原反应.ppt
  • 2013届高考苏教版化学一轮复习课件:专题2第1单元 氯、溴、碘及其化合物.ppt2013届高考苏教版化学一轮复习课件:专题2第1单元 氯、溴、碘及其化合物.ppt
  • 2013届高考苏教版化学一轮复习课件:专题2 从海水中获得的化学物质亮点专题集锦(2).ppt2013届高考苏教版化学一轮复习课件:专题2 从海水中获得的化学物质亮点专题集锦(2).ppt
  • 2013届高考苏教版化学一轮复习课件:专题1第3单元 溶液的配制及分析.ppt2013届高考苏教版化学一轮复习课件:专题1第3单元 溶液的配制及分析.ppt
  • 2013届高考苏教版化学一轮复习课件:专题1 化学家眼中的物质世界亮点专题集锦(1).ppt2013届高考苏教版化学一轮复习课件:专题1 化学家眼中的物质世界亮点专题集锦(1).ppt
  • 2013届高考苏教版化学一轮复习课件:专题11 实验化学 亮点专题集锦(11).ppt2013届高考苏教版化学一轮复习课件:专题11 实验化学 亮点专题集锦(11).ppt
  • 2013届高考苏教版化学一轮复习课件:专题10 烃的衍生物 生命活动中的物质基础亮点专题集锦(10).ppt2013届高考苏教版化学一轮复习课件:专题10 烃的衍生物 生命活动中的物质基础亮点专题集锦(10).ppt
  • 2013届高考考前三个月专题7 反应热与盖斯定律.ppt2013届高考考前三个月专题7 反应热与盖斯定律.ppt
  • 2013届高考考前三个月专题5 离子反应.ppt2013届高考考前三个月专题5 离子反应.ppt
  • 2013届高考考前三个月专题1 化学基本素养整合.ppt2013届高考考前三个月专题1 化学基本素养整合.ppt
  • 2013届高考生物第二轮考前冲刺专题复习课件8.ppt2013届高考生物第二轮考前冲刺专题复习课件8.ppt
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1