2022届高考数学考前20天冲刺模拟试卷(19)(Word版附解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 高考 数学 考前 20 天冲 模拟 试卷 19 Word 解析
- 资源描述:
-
1、考前20天终极冲刺高考模拟考试卷(19)一、 选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知全集,集合,则A,B,CD2已知,为虚数单位,则ABCD3某小区为了解居民用水情况,通过随机抽样得到部分家庭月均用水量(单位:,将所得数据分为6组:,并整理得到如图频率分布直方图,若以频率替代概率,从该小区随机抽取5个家庭,则月均用水量在区间,内的家庭个数的数学期望为A3.6B3C1.6D1.54已知第一象限的点在直线上,则的最小值是AB8CD275已知点,分别是双曲线的左、右焦点,直线与双曲线交于,两点,若,则双曲线的渐近线方程是ABCD63位老
2、师和4名学生站成一排,要求任意两位老师都不相邻,则不同的排法种数为ABCD7在三棱锥中,已知平面,若三棱锥的各顶点都在球的球面上,则球的半径为A1BCD8函数的部分图象如图所示,且(a)(b),对不同的,若,有,则A在上是递减的B在上是递减的C在上是递增的D在上是递增的二、 选择题:本题共4小题,每小题5分,共20分。在每小题给出的四个选项中。有多项符合题目要求。全部选对的得5分,部分选对的对2分,有选错的得0分。9某保险公司为客户定制了5个险种:甲,一年期短险;乙,两全保险;丙,理财类保险;丁,定期寿险:戊,重大疾病保险,各种保险按相关约定进行参保与理赔该保险公司对5个险种参保客户进行抽样调
3、查,得出如下的统计图例:用该样本估计总体,以下四个选项正确的是A54周岁以上参保人数最少B周岁人群参保总费用最少C丁险种更受参保人青睐D30周岁以上的人群约占参保人群10已知,则正确的有AB与共线的单位向量是,C与的夹角为D与平行11在中,内角,的对边分别为,面积为,则下列结论中正确的是A若是锐角三角形,B若,则C若,则D若,则一定是等腰直角三角形12已知函数,则下列命题正确的是A在,上是增函数B的值域是,C方程有两个实数解D对于,满足,则三、 填空题:本题共4小题,每小题5分,共20分。13二项式展开式中含项的系数为14数列中,且时,有,则15已知为抛物线的焦点,过点且斜率为1的直线与抛物线
4、相交于,两点若,则线段的长为16在三棱锥中,平面平面,为线段上一动点,当取最小值时,四、 解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。17在中,分别是角,的对边,并且()已知_,计算的面积;请从,这三个条件中任选两个,将问题()补充完整,并作答()求的最大值18为等差数列的前项和,已知,(1)求及;(2)设,数列的前项和为证明:19如图,已知四边形为等腰梯形,四边形为矩形,点,分别是线段,的中点,点在线段上()探究:是否存在点,使得平面平面?并证明;()若,线段在平面内的投影与线段重合,求直线与平面所成角的正弦值20某精准扶贫帮扶单位为帮助定点扶贫村真正脱贫,决定在
5、该村兴办一个年产量为1000万块的瓷砖厂,以吸纳富余劳动力,提高村民收入已知瓷砖的质量以某质量指标值(单位:分,为衡量标准,为估算其经济效益,该瓷砖厂进行了试产,并从中随机抽取了100块瓷砖,进行了统计,其统计结果如表所示:质量指标值,频数213212524114试利用样本分布估计总体分布的思想解决下列问题(注每组数据取区间的中点值)(1)在一天内抽检瓷砖,若出现了瓷砖的质量指标值在区间,内,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,其中近似为样本平均数,近似为样本的标准差,并已求得若某天抽检到的瓷砖有1块的值为20分,则从这一天抽检的结果看,是否需对当
6、天的生产过程进行检查?(2)已知每块瓷砖的质量指标值与等级及纯利润(单位:元)的关系如表所示:质量指标值,产品等级次品三级二级一级特级纯利润(元块)13510假定该瓷砖厂所生产的瓷砖都能销售出去,且瓷砖厂的总投资为3000万元(含引进生产线、兴建厂房等一切费用在内),问:该厂能否在一年之内通过生产并销售瓷砖收回投资?试说明理由21、分别为椭圆的左、右焦点,过右焦点的直线与椭圆交于,两点,且不为长轴,的周长为8,椭圆的离心率为()求此椭圆的方程;()为其右顶点,求证:直线,两直线的斜率之积为定值,并求出此定值22已知函数(1)讨论函数的单调性;(2)令,若是函数的极小值点,求实数的取值范围考前2
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
六年级下册语文课件-3.1你浪花的一滴水|北师大版 (共19张PPT).pptx
