江苏省徐州市2015-2016学年高二上学期期末数学试卷(文科) WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省徐州市2015-2016学年高二上学期期末数学试卷文科 WORD版含解析 江苏省 徐州市 2015 2016 学年 高二上 学期 期末 数学试卷 文科 WORD 解析
- 资源描述:
-
1、2015-2016学年江苏省徐州市高二(上)期末数学试卷(文科)一、填空题:(本大题共14小题,每小题5分,共计70分)1抛物线y2=12x的焦点坐标是2命题“xR,x20”的否定为3底面边长为2,高为3的正三棱锥的体积为4已知椭圆+=1的两个焦点分别为F1,F2,点P是椭圆上一点,则PF1F2的周长为5已知正方体的体积为64,则与该正方体各面均相同的球的表面积为6已知函数f(x)=xsinx,则f()=7双曲线=1的焦点到渐近线的距离为8“m”是“方程+=1表示在y轴上的椭圆”的条件(填写“充分不必要”、“必要不充分”、“充要”“既不充分也不必要”之一)9若直线4x3y=0与圆x2+y22x
2、+ay+1=0相切,则实数a的值为10若函数f(x)=exax在(1,+)上单调增,则实数a的最大值为11已知F为椭圆C: +=1(ab0)的右焦点,A、B分别为椭圆C的左、上顶点,若BF的垂直平分线恰好过点A,则椭圆C的离心率为12若直线l与曲线y=x3相切于点P,且与直线y=3x+2平行,则点P的坐标为13在平面直角坐标系xOy中,已知圆(xm1)2+(y2m)2=4上有且只有两个点到原点O的距离为3,则实数m的取值范围为14已知函数f(x)=a(x1)2lnx,g(x)=,若对任意的x0(0,e,总存在两个不同的x1,x2(0,e,使得f(x1)=f(x2)=g(x0)则实数a的取值范围
3、为二、解答题:本大题共6小题,共计90分.15已知p:4x2+12x70,q:a3xa+3(1)当a=0时,若p真q假,求实数x的取值范围;(2)若p是q的充分条件,求实数a的取值范围16如图,在四棱锥PABCD中,四边形ABCD是矩形,平面PCD平面ABCD,M为PC中点求证:(1)PA平面MDB;(2)PDBC17已知直线l与圆C:x2+y2+2x4y+a=0相交于A,B两点,弦AB的中点为M(0,1)(1)若圆C的半径为,求实数a的值;(2)若弦AB的长为4,求实数a的值;(3)求直线l的方程及实数a的取值范围18如图,ABCD是长方形硬纸片,AB=80cm,AD=50cm,在硬纸片的四
4、角切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸箱,设切去的小正方形的白边长为x(cm)(1)若要求纸箱的侧面积S(cm2)最大,试问x应取何值?(2)若要求纸箱的容积V(cm3)最大,试问x应取何值?19在平面直角坐标系xOy中,椭圆C: +=1(ab0)的离心率为,连接椭圆C的四个顶点所形成的四边形面积为4(1)求椭圆C的标准方程;(2)如图,过椭圆C的下顶点A作两条互相垂直的直线,分别交椭圆C于点M,N,设直线AM的斜率为k,直线l:y=x分别与直线AM,AN交于点P,Q,记AMN,APQ的面积分别为S1,S2,是否存在直线l,使得=?若存在,求出所有直线l的方程;
5、若不存在,说明理由20已知函数f(x)=lnxax+1(aR)(1)当a=1时,求函数f(x)的极大值;(2)若对任意的x(0,+),都有f(x)2x成立,求a的取值范围;(3)设h(x)=f(x)+ax,对任意的x1,x2(0,+),且x1x2,证明:恒成立2015-2016学年江苏省徐州市高二(上)期末数学试卷(文科)参考答案与试题解析一、填空题:(本大题共14小题,每小题5分,共计70分)1抛物线y2=12x的焦点坐标是(3,0)【考点】抛物线的简单性质【分析】确定抛物线的焦点位置,进而可确定抛物线的焦点坐标【解答】解:抛物线y2=12x的焦点在x轴上,且p=6,=3,抛物线y2=12x
6、的焦点坐标为(3,0)故答案为:(3,0)2命题“xR,x20”的否定为xR,x20【考点】命题的否定【分析】直接利用特称命题的否定是全称命题写出结果即可【解答】解:因为特称命题的否定是全称命题,所以,命题“xR,x20”的否定为:xR,x20故答案为:xR,x203底面边长为2,高为3的正三棱锥的体积为【考点】棱柱、棱锥、棱台的体积【分析】求出正三棱锥的底面面积,然后求解体积【解答】解:底面边长为2,高为3的正三棱锥的体积为: =故答案为:4已知椭圆+=1的两个焦点分别为F1,F2,点P是椭圆上一点,则PF1F2的周长为18【考点】椭圆的简单性质【分析】由题意知a=5,b=3,c=4,从而可
7、得|PF1|+|PF2|=2a=10,|F1F2|=2c=8【解答】解:由题意作图如右图,椭圆的标准方程为+=1,a=5,b=3,c=4,|PF1|+|PF2|=2a=10,|F1F2|=2c=8,PF1F2的周长为10+8=18;故答案为:185已知正方体的体积为64,则与该正方体各面均相同的球的表面积为16【考点】球内接多面体;球的体积和表面积【分析】由已知求出正方体的棱长为4,所以正方体的内切球的半径为2,由球的表面积公式得到所求【解答】解:因为正方体的体积为64,所以棱长为4,所以正方体的内切球的半径为2,所以该正方体的内切球的表面积为422=16故答案为:166已知函数f(x)=xs
8、inx,则f()=【考点】导数的运算【分析】直接求出函数的导数即可【解答】解:函数f(x)=xsinx,则f(x)=sinx+xcosx,f()=sin+cos=故答案为:7双曲线=1的焦点到渐近线的距离为2【考点】双曲线的简单性质【分析】求出双曲线的焦点坐标,渐近线方程,利用距离公式求解即可【解答】解:双曲线=1的一个焦点(,0),一条渐近线方程为:y=,双曲线=1的焦点到渐近线的距离为: =2故答案为:28“m”是“方程+=1表示在y轴上的椭圆”的必要不充分条件(填写“充分不必要”、“必要不充分”、“充要”“既不充分也不必要”之一)【考点】必要条件、充分条件与充要条件的判断【分析】根据椭圆
9、的定义,求出m的范围,结合集合的包含关系判断充分必要性即可【解答】解:若“方程+=1表示在y轴上的椭圆”,则,解得:1m,故“m”是“方程+=1表示在y轴上的椭圆”的必要不充分条件,故答案为:必要不充分9若直线4x3y=0与圆x2+y22x+ay+1=0相切,则实数a的值为1或4【考点】圆的切线方程【分析】把圆的方程化为标准方程后,找出圆心坐标和圆的半径,然后根据直线与圆相切得到圆心到直线的距离等于圆的半径,列出关于a的方程,求出方程的解即可得到a的值【解答】解:把圆的方程化为标准方程得:(x1)2+(y+)2=,所以圆心坐标为(1,),半径r=|,由已知直线与圆相切,得到圆心到直线的距离d=
10、r=|,解得a=1或4故答案为:1或410若函数f(x)=exax在(1,+)上单调增,则实数a的最大值为e【考点】变化的快慢与变化率【分析】根据导数和函数单调性的关系,再分离参数,求出最值即可【解答】解:f(x)=exa函数f(x)在区间(1,+)上单调递增函数f(x)=exa0在区间(1,+)上恒成立,aexmin在区间(1,+)上成立而exe,ae故答案为:e11已知F为椭圆C: +=1(ab0)的右焦点,A、B分别为椭圆C的左、上顶点,若BF的垂直平分线恰好过点A,则椭圆C的离心率为【考点】椭圆的简单性质【分析】利用线段垂直平分线的性质可得线段BF的垂直平分线的方程,进而得出【解答】解
11、:由已知可得:A(a,0),B(0,b),F(c,0),线段BF的中点M,kBF=,可得线段BF的垂直平分线的斜率为线段BF的垂直平分线的方程为:y=,BF的垂直平分线恰好过点A,0=,化为:2e2+2e1=0,解得e=故答案为:12若直线l与曲线y=x3相切于点P,且与直线y=3x+2平行,则点P的坐标为(1,1),(1,1)【考点】利用导数研究曲线上某点切线方程【分析】利用直线平行斜率相等求出切线的斜率,再利用导数在切点处的值是曲线的切线斜率求出切线斜率,列出方程解得即可【解答】解:设切点P(m,m3),由y=x3的导数为y=3x2,可得切线的斜率为k=3m2,由切线与直线y=3x+2平行
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-317082.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
