全国通用2022版高考数学考前三个月复习冲刺专题6第27练空间向量解决立体几何问题两妙招理.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 通用 2022 高考 数学 考前 三个月 复习 冲刺 专题 27 空间 向量 解决 立体几何 问题 妙招
- 资源描述:
-
1、第27练空间向量解决立体几何问题两妙招“选基底”与“建系”题型分析高考展望向量作为一个工具,其用途是非常广泛的,可以解决现高中阶段立体几何中的大部分问题,不管是证明位置关系还是求解问题.而向量中最主要的两个手段就是选基底与建立空间直角坐标系.在高考中,用向量解决立体几何解答题,几乎成了必然的选择.常考题型精析题型一选好基底解决立体几何问题例1如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,点M、N分别是AB、CD的中点.(1)求证:MNAB,MNCD;(2)求MN的长;(3)求异面直线AN与CM夹角的余弦值.点评对于不易建立直角坐标系的题目,选择好“基底”也可使问题顺利解决.“基底
2、”就是一个坐标系,选择时,作为基底的向量一般为已知向量,且能进行运算,还需能将其他向量线性表示.变式训练1已知E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点,(1)求证:E、F、G、H四点共面;(2)求证:BD平面EFGH;(3)设M是EG和FH的交点,求证:对空间任一点O,有().题型二建立空间直角坐标系解决立体几何问题例2(2022湖南)如图,已知四棱台ABCDA1B1C1D1的上、下底面分别是边长为3和6的正方形,AA16,且AA1底面ABCD,点P,Q分别在棱DD1,BC上.(1)若P是DD1的中点,证明:AB1PQ;(2)若PQ平面ABB1A1,二面角PQDA
3、的余弦值为,求四面体ADPQ的体积.点评(1)建立空间直角坐标系前应先观察题目中的垂直关系,最好借助已知的垂直关系建系.(2)利用题目中的数量关系,确定定点的坐标,动点的坐标可利用共线关系(a),设出动点坐标.(3)要掌握利用法向量求线面角、二面角、点到面的距离的公式法.变式训练2如图,在底面是矩形的四棱锥PABCD中,PA底面ABCD,E,F分别是PC,PD的中点,PAAB1,BC2.(1)求证:EF平面PAB;(2)求证:平面PAD平面PDC.高考题型精练1.(2022北京西城区模拟)已知正方体ABCDA1B1C1D1中,点E为上底面A1C1的中心,若xy,则x,y的值分别为()A.x1,
4、y1 B.x1,yC.x,y D.x,y12.已知平面ABC,点M是空间任意一点,点M满足条件,则直线AM()A.与平面ABC平行 B.是平面ABC的斜线C.是平面ABC的垂线 D.在平面ABC内3.已知平面内有一点M(1,1,2),平面的一个法向量为n(6,3,6),则下列点P中,在平面内的是()A.P(2,3,3) B.P(2,0,1)C.P(4,4,0) D.P(3,3,4)4.已知a(2,1,3),b(1,4,2),c(7,5,),若a,b,c三向量共面,则实数等于()A. B. C. D.5.如图,在长方体ABCDA1B1C1D1中,AB2,AA1,AD2,P为C1D1的中点,M为B
5、C的中点.则AM与PM所成的角为()A.60 B.45C.90 D.以上都不正确6.在正方体ABCDA1B1C1D1中,P为正方形A1B1C1D1四边上的动点,O为底面正方形ABCD的中心,M,N分别为AB,BC的中点,点Q为平面ABCD内一点,线段D1Q与OP互相平分,则满足的实数有_个.7.如图,在正方体ABCDA1B1C1D1中,棱长为a,M、N分别为A1B和AC上的点,A1MAN,则MN与平面BB1C1C的位置关系是_.8.如图,在长方体ABCDA1B1C1D1中,AA1AD1,E为CD的中点.(1)求证:B1EAD1;(2)在棱AA1上是否存在一点P,使得DP平面B1AE?若存在,求
6、AP的长;若不存在,说明理由.9.(2022课标全国)如图,四棱锥PABCD中,底面ABCD为矩形,PA平面ABCD,E为PD的中点.(1)证明:PB平面AEC;(2)设二面角DAEC为60,AP1,AD,求三棱锥EACD的体积.10.(2022广州模拟)如图所示,在直三棱柱ABCA1B1C1中,CA4,CB4,CC12,ACB90,点M在线段A1B1上.(1)若A1M3MB1,求异面直线AM和A1C所成角的余弦值;(2)若直线AM与平面ABC1所成角为30,试确定点M的位置.11.在四棱锥PABCD中,PD底面ABCD,底面ABCD为正方形,PDDC,E、F分别是AB、PB的中点.(1)求证
7、:EFCD;(2)在平面PAD内求一点G,使GF平面PCB,并证明你的结论.12.(2022天津)如图,在四棱柱ABCDA1B1C1D1中,侧棱A1A底面ABCD,ABAC,AB1,ACAA12,ADCD,且点M和N分别为B1C和D1D的中点.(1)求证:MN平面ABCD;(2)求二面角D1ACB1的正弦值;(3)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正弦值为,求线段A1E的长.答案精析第27练空间向量解决立体几何问题两妙招“选基底”与“建系”常考题型精析例1(1)证明设p,q,r.由题意可知:|p|q|r|a,且p、q、r三向量两两夹角均为60.()(qrp),(qrp)p
8、(qprpp2)(a2cos 60a2cos 60a2)0.MNAB,同理可证MNCD.(2)解由(1)可知(qrp),|22(qrp)2q2r2p22(qrpqrp)a2a2a22()2a2.|a,MN的长为a.(3)解设向量 与的夹角为.()(qr),qp,(qr)(qp)(q2qprqrp)(a2a2cos 60a2cos 60a2cos 60)(a2).又|a,|cos aacos .cos ,向量与的夹角的余弦值为,从而异面直线AN与CM夹角的余弦值为.变式训练1证明(1)连接BG,则(),由共面向量定理的推论知:E、F、G、H四点共面.(2)因为(),所以EHBD.又EH平面EFG
9、H,BD平面EFGH,所以BD平面EFGH.(3)找一点O,并连接OM,OA,OB,OC,OD,OE,OG.由(2)知,同理,所以,即EH綊FG,所以四边形EFGH是平行四边形.所以EG,FH交于一点M且被M平分.故()().例2解由题设知,AA1,AB,AD两两垂直,以A为坐标原点,AB,AD,AA1所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则相关各点的坐标为A(0,0,0),B1(3,0,6),D(0,6,0),D1(0,3,6),Q(6,m,0),其中mBQ,0m6.(1)证明若P是DD1的中点,则P,又(3,0,6),于是18180,所以,即AB1PQ.(2)由题设
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-339008.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
2024春八年级语文下册 第三单元 综合性学习 古诗苑漫步上课课件 新人教版.ppt
