分享
分享赚钱 收藏 举报 版权申诉 / 20

类型2021-2022高中数学人教版必修1课件:3-2-2函数模型的应用实例 (系列四) .ppt

  • 上传人:a****
  • 文档编号:461535
  • 上传时间:2025-12-08
  • 格式:PPT
  • 页数:20
  • 大小:912.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021-2022高中数学人教版必修1课件:3-2-2函数模型的应用实例 系列四 2021 2022 高中 学人 必修 课件 函数 模型 应用 实例 系列
    资源描述:

    1、人教版必修1第三章 函数的应用3.2 函数模型及其应用3.2.1 函数模型的应用实例 1我们所学过的函数有那些?2你能分别说出有关这些函数的解析式、函数图象以及性质吗?一次函数、二次函数、指数函数、对数函数以及幂函数共5种函数 3你能分别说说这些函数在实际生活中的应用吗?复习引入某学生早上起床太晚,为避免迟到,不得不跑步到教室,但由于平时不注意锻炼身体,结果跑了一段就累了,不得不走完余下的路程。如果用纵轴表示家到教室的距离,横轴表示出发后的时间,则下列四个图象比较符合此人走法的是()0(A)0(B)0(D)0(C)1.下图中哪几个图像与下述三件事分别吻合得最好?请你为剩下的那个 图像写出一件事

    2、。我离开家不久,发现自己把作业忘在家里,于是返回家里找到作业再上学我骑车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间我出发后,心情轻松,缓慢行进,后来为了赶时间开始加速(D)(A)(B)练习ABC0离家距离时间0离家距离时间 0时间离家距离离家距离0时间Dc对应的参考事件:我出发后感到时间较紧,所以加速前进,后来发现 时间还很充裕,于是放慢了速度。解:(1)阴影部分的面积为阴影部分的面积表示汽车在这5小时内行驶的路程为360km例3 一辆汽车在某段路程中的行驶速度与时间的关系如图所示:(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车的里程表在汽车行驶这段路程

    3、前的读数为2004 km,试建立汽车行驶这段路程时汽车里程表读数s km与时间t h的函数解析式,并作出相应的图象908070605040302010vt1 2 3 4 5函数模型应用实例解:例3 一辆汽车在某段路程中的行驶速度与时间的关系如图所示:(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004 km,试建立汽车行驶这段路程时汽车里程表读数s km与时间t h的函数解析式,并作出相应的图象(2)根据图形可得:例4 人口问题是当今世界各国普遍关心的问题认识人口数量的变化规律,可以为有效控制人口增长提供依据早在1798年,英国经

    4、济学家马尔萨斯就提出了自然状态下的人口增长模型:yy0ert 其中t表示经过的时间,y0 表示 t0时的人口数,r表示人口的年平均增长率例4 人口问题是当今世界各国普遍关心的问题认识人口数量的变化规律,可以为有效控制人口增长提供依据早在1798年,英国经济学家马尔萨斯就提出了自然状态下的人口增长模型:yy0ert 其中t表示经过的时间,y0 表示 t0时的人口数,r表示人口的年平均增长率下表是19501959年我国的人口数据资料:年份1950195119521953195419551956195719581959人数/万人551965630057482587966026661456628286

    5、45636599467207(1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到00001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;(2)如果按上表的增长趋势,大约在哪一年我国的人口达到13亿?例4 人口问题是当今世界各国普遍关心的问题认识人口数量的变化规律,可以为有效控制人口增长提供依据早在1798年,英国经济学家马尔萨斯就提出了自然状态下的人口增长模型:yy0ert 其中t表示经过的时间,y0 表示 t0时的人口数,r表示人口的年平均增长率下表是19501959年我国的人口数据资料:年份1950195119521

    6、953195419551956195719581959人数/万人55196563005748258796602666145662828645636599467207解:设1950 1959年的人口增长率分别为r1,r1,r9经计算得我国人口在这几年得平均增长率为:r(r1r1r9)90.0221令y055196,则我国在1950 1959年期间的人口增长模型为:根据表中数据作出散点图年份1950195119521953195419551956195719581959人数/万人55196563005748258796602666145662828645636599467207 根据表中数据作出散

    7、点图年份1950195119521953195419551956195719581959人数/万人55196563005748258796602666145662828645636599467207并作出函数的图象解:(2)将y130000带入由计算器可得:t 38.76例4 人口问题是当今世界各国普遍关心的问题认识人口数量的变化规律,可以为有效控制人口增长提供依据早在1798年,英国经济学家马尔萨斯就提出了自然状态下的人口增长模型:yy0ert 其中t表示经过的时间,y0 表示 t0时的人口数,r表示人口的年平均增长率下表是19501959年我国的人口数据资料:年份1950195119521

    8、953195419551956195719581959人数/万人55196563005748258796602666145662828645636599467207(2)如果按上表的增长趋势,大约在哪一年我国的人口达到13亿?所以,如果按照表中的增长趋势,那么大约在1950年后的第39年(即1989年)我国的人口就已达到13亿由此可以看到,如果不实行计划生育,而是让人口自然增长,今天我国将面临难以承受的人口压力例5 某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如表所示:销售单价/元日均销售量/桶678910111248044040036

    9、0320280240请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?分析:由表中信息可知销售单价每增加1元,日均销售量就减少40 桶销售利润怎样计算较好?解:设在进价基础上增加x元后,日均经营利润为y元,则有日均销售量为(桶)而有最大值只需将销售单价定为11.5元,就可获得最大的利润。根据收集到的数据,作出散点图,然后通过观察图象判断问题所适合的函数模型,利用计算器或计算机的数据拟合功能得出具体的函数解析式,再用得到的函数模型解决相应的问题,这是函数应用的一个基本过程应注意的是,用已知的函数模型刻画实际问题时,由于实际问题的条件与得到已知模型的条件会有所不同,因此往往需要对模型进行修正利用函数知识和函数观点解决实际问题时,一般按以下几个步骤进行:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法对得到的数学模型予以解答,求出结果;(4)将数学问题的解代入实际问题进行核查舍去不合题意的解,并作答函数模型应用步骤用框图表示如下:函数模型应用框图解决函数应用问题的基本步骤:知识小结

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021-2022高中数学人教版必修1课件:3-2-2函数模型的应用实例 (系列四) .ppt
    链接地址:https://www.ketangku.com/wenku/file-461535.html
    相关资源 更多
  • 六年级上册数学一课一练数学好玩 第3课时比赛场次 北师大版(含答案).docx六年级上册数学一课一练数学好玩 第3课时比赛场次 北师大版(含答案).docx
  • 六年级上册数学一课一练总复习 第3课时 图形与几何 青岛版(含答案).docx六年级上册数学一课一练总复习 第3课时 图形与几何 青岛版(含答案).docx
  • 六年级上册数学一课一练总复习 第1课时 数与代数(1) 青岛版(含答案).docx六年级上册数学一课一练总复习 第1课时 数与代数(1) 青岛版(含答案).docx
  • 六年级上册数学一课一练圆的周长_人教新课标(含解析).docx六年级上册数学一课一练圆的周长_人教新课标(含解析).docx
  • 六年级上册数学一课一练圆.docx六年级上册数学一课一练圆.docx
  • 六年级上册数学一课一练分数除法_人教新课标()(含解析).docx六年级上册数学一课一练分数除法_人教新课标()(含解析).docx
  • 六年级上册数学一课一练分数除法_人教新课标(含解析).docx六年级上册数学一课一练分数除法_人教新课标(含解析).docx
  • 六年级上册数学一课一练分数除法.docx六年级上册数学一课一练分数除法.docx
  • 六年级上册数学一课一练分数的乘除混合运算.docx六年级上册数学一课一练分数的乘除混合运算.docx
  • 六年级上册数学一课一练分数乘法的应用.docx六年级上册数学一课一练分数乘法的应用.docx
  • 六年级上册数学一课一练分数乘法 人教新课标.docx六年级上册数学一课一练分数乘法 人教新课标.docx
  • 六年级上册数学一课一练分数乘整数_人教新课标()(含解析).docx六年级上册数学一课一练分数乘整数_人教新课标()(含解析).docx
  • 六年级上册数学一课一练分数乘整数_人教新课标(含解析).docx六年级上册数学一课一练分数乘整数_人教新课标(含解析).docx
  • 六年级上册数学一课一练位置与方向(二)_人教新课标()(含解析).docx六年级上册数学一课一练位置与方向(二)_人教新课标()(含解析).docx
  • 六年级上册数学一课一练位置与方向(二)_人教新课标(含解析).docx六年级上册数学一课一练位置与方向(二)_人教新课标(含解析).docx
  • 六年级上册数学一课一练位置.docx六年级上册数学一课一练位置.docx
  • 六年级上册数学一课一练8数学广角 数与形∣人教新课标.docx六年级上册数学一课一练8数学广角 数与形∣人教新课标.docx
  • 六年级上册数学一课一练5.2 圆的周长(无答案)_北京版().docx六年级上册数学一课一练5.2 圆的周长(无答案)_北京版().docx
  • 六年级上册数学一课一练3.1倒数的认识∣人教新课标.docx六年级上册数学一课一练3.1倒数的认识∣人教新课标.docx
  • 六年级上册数学一课一练1.2分数乘分数∣人教新课标.docx六年级上册数学一课一练1.2分数乘分数∣人教新课标.docx
  • 六年级上册数学一课一练-8.可能性 西师大版(2014秋)(含答案).docx六年级上册数学一课一练-8.可能性 西师大版(2014秋)(含答案).docx
  • 六年级上册数学一课一练-6.1分数混合运算 西师大版(2014秋)(含答案).docx六年级上册数学一课一练-6.1分数混合运算 西师大版(2014秋)(含答案).docx
  • 六年级上册数学一课一练-5.图形的变换和位置的确定 西师大版(2014秋)(含答案).docx六年级上册数学一课一练-5.图形的变换和位置的确定 西师大版(2014秋)(含答案).docx
  • 六年级上册数学一课一练-4.比和比例的分配 西师大版(2014秋)(含答案).docx六年级上册数学一课一练-4.比和比例的分配 西师大版(2014秋)(含答案).docx
  • 六年级上册数学一课一练-3.分数除法 西师大版(2014秋).docx六年级上册数学一课一练-3.分数除法 西师大版(2014秋).docx
  • 六年级上册数学一课一练-2.圆 西师大版(2014秋).docx六年级上册数学一课一练-2.圆 西师大版(2014秋).docx
  • 六年级上册数学一课一练-1.分数乘法 西师大版(2014秋).docx六年级上册数学一课一练-1.分数乘法 西师大版(2014秋).docx
  • 六年级上册数学一课一练 “黄金比”之美 青岛版(含答案).docx六年级上册数学一课一练 “黄金比”之美 青岛版(含答案).docx
  • 六年级上册数学 分数乘除法 综合复习.docx六年级上册数学 分数乘除法 综合复习.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1