分享
分享赚钱 收藏 举报 版权申诉 / 7

类型2021-2022高中数学人教版必修5教案:2-1数列的概念与简单表示法 (系列三) WORD版含答案.doc

  • 上传人:a****
  • 文档编号:462117
  • 上传时间:2025-12-08
  • 格式:DOC
  • 页数:7
  • 大小:84KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021-2022高中数学人教版必修5教案:2-1数列的概念与简单表示法 系列三 WORD版含答案 2021 2022 高中 学人 必修 教案 数列 概念 简单 表示 系列 WORD 答案
    资源描述:

    1、第一课时 数 列(二)教学目标:了解数列的递推公式,明确递推公式与通项公式的异同,会根据数列的递推公式写出数列的前n项;提高学生的推理能力,培养学生的应用意识.教学重点:1.数列的递推公式.2.根据数列的递推公式写出数列的前n项.教学难点:理解递推公式与通项公式的关系.教学过程:.复习回顾上节课我们在学习函数的基础上学习了数列及有关概念,下面先来回顾一下上节课所学的主要内容.数列的定义、项的定义、数列的表示形式、数列的通项公式及数列分类等等.讲授新课我们为什么要学习有关数列的知识呢?那是因为在现实生活中,我们经常会遇到有关数列的问题,学习它,研究它,主要是想利用它来解决一些实际问题,让其为我们

    2、的生活更好地服务.也就是说,我们所学知识都来源于实践,最后还要应用于生活.下面,我们继续探讨有关数列的问题.首先,请同学们来看一幅钢管堆放示意图.模型一: 自上而下:第一层钢管数为4;即: 1413,第二层钢管数为5;即:2523第三层钢管数为6;即:3633,第四层钢管数为7;即:4743第五层钢管数为8;即:5853,第六层钢管数为9;即:6963第七层钢管数为10;即:71073若用an表示自上而下每一层的钢管数,n表示层数,则可得出每一层的钢管数可构成一数列,即:4,5,6,7,8,9,10,且ann3(1n7,nN*)同学们运用每一层的钢管数与其层数之间的对应规律建立了数列模型,这完

    3、全正确,运用这一关系,会很快捷地求出每一层的钢管数.这会给我们的统计与计算带来很多方便.模型二:自上而下第一层钢管数为4;第二层钢管数为541;第三层钢管数为651;第四层钢管数为761;第五层钢管数为871;第六层钢管数为981;第七层钢管数为1091.即:自上而下每一层的钢管数都比上一层钢管数多1.若用an表示每一层的钢管数,则a14;a2541a11;a3651a21;a4761a31;a5871a41;a6981a51;a71091a61;即:anan11(2n7,nN*)对于上述所求关系,若知其第1项,即可求出其他各项.看来,这一关系也较为重要.这一关系,咱们把它称为递推关系,表示这

    4、一关系的式子,咱们把之称为递推公式1.定义递推公式:如果已知数列an的第1项(或前n项),且任一项an与它的前一项an1(或前n项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.说明:数列的递推公式揭示了数列的任一项an与它的前一项an1(或前n项)的关系,也是给出数列的一种重要方法.下面,我们结合例子来体会一下数列的递推公式.2.例题讲解例1已知数列an的第1项是1,以后的各项由公式an1给出,写出这个数列的前5项.分析:题中已给出an的第1项即a11,递推公式:an1解:据题意可知:a11,a212,a31,a41,a5.例2已知数列an中,a11,a22,an3an

    5、1an2(n3),试写出数列的前4项.解:由已知得a11,a22,a33a2a17,a43a3a223.课堂练习写出下面数列an的前5项.1.a15,anan13(n2)解法一:a15;a2a138;a3a2311;a4a3314;a5a4317.评析:由已知中的a1与递推公式anan13(n2),依次递推出该数列的前5项,这是递推公式的最基本的应用.是否可利用该数列的递推公式而求得其通项公式呢?请同学们再仔细观察此递推公式.解法二:由anan13(n2),得anan13则a2a13,a3a23,a4a33,a5a43,an1an23,anan13将上述n1个式子左右两边分别相加,便可得ana

    6、13(n1),即an3n2(n2)又由a15满足上式,an3n2(n1)为此数列的通项公式.2.a12,an2an1(n2)解法一:由a12与an2an1(n2)得:a12,a22a14,a32a28,a42a316,a52a432.解法二:由an2an1(n2),得2(n2),且a12则:2,2,2,2, 2若将上述n1个式子左右两边分别相乘,便可得 2n1即:an2n(n2),又由a12满足上式an2n(n1)为此数列的通项公式.a2224,a3238,a42416,a52532.3.a11,anan1 (n2)解:由a11,anan1 (n2),得a11,a2a12,a3a2,a4a3,

    7、a5a4.课时小结这节课我们主要学习了数列的另一种给出方法,即递推公式及其用法,课后注意理解.另外,还要注意它与通项公式的区别在于:1.通项公式反映的是项与项数之间的关系,而递推公式反映的是相邻两项(或n项)之间的关系.2.对于通项公式,只要将公式中的n依次取1,2,3即可得到相应的项.而递推公式则要已知首项(或前n项),才可依次求出其他的项.课后作业课本P32习题 4,5,6数 列(二)1已知数列an中,a11,an+1 (nN*), 则a5等于 ( )A. B. C. D. 2已知数列,则5是数列的 ( )A.第18项 B.第19项 C.第17项 D.第20项3在数列1,2,2,3,3,3

    8、,4,4,4,4,中,a100等于 ( )A.13 B.100 C.10 D.14 4在数列an中,a11,a25,an+2an+1an(nN*),则a1000等于 ( )A.5B.5 C.1D.1 5设an是首项为1的正项数列,且(n1)an+12nan2an+1an0(nN*),则它的通项公式an .6根据下列各数列的首项和递推公式,分别写出它的前五项,并归纳出通项公式:(1)a10,an+1an(2n1)(nN*);(2)a11,an+1 (nN*)7若a12,a24,anlog2(an1an2)(n3),写出an的前4项.8若a13,anan1 (n2),bn,写出bn的前3项.数 列

    9、(二)答案1B 2B 3D 4A5解法一:已知等式可化为:(an+1an)(n1)an+1nan0an0(nN*),(n1)an+1nan0 即an+1an反复利用递推关系,得anan1an2an3a1a1解法二:前面同解法一.由,得a2a1,a3a2,a4a3, 归纳,得an (nN*).评述:本题主要考查递推公式.6根据下列各数列的首项和递推公式,分别写出它的前五项,并归纳出通项公式:(1)a10,an+1an(2n1)(nN*);(2)a11,an+1 (nN*)解:(1)a10;a2a111;a3a234;a4a359;a5a4716;a102;a212;a322;a432;a542.可归纳出an(n1)2.(2)a11,a2,a3,a4,a5,a11;a2;a3;a4;a5;由此可见:an.评述:适当配凑是本题进行归纳的前提,从整体上把握一件事情是现代数学的重要手段,加强类比是探索某些规律的常用方法之一.7若a12,a24,anlog2(an1an2)(n3),写出an的前4项.解:a12,a24,anlog2(an1an2)(n3)a3log2(a2a1)log2(24)3,a4log2(a3a2)log2122log23.8若a13,anan1 (n2),bn,写出bn的前3项.解:a13,anan1 (n2), a2a13.a3a2.bn, b1,b2,b3. 7

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021-2022高中数学人教版必修5教案:2-1数列的概念与简单表示法 (系列三) WORD版含答案.doc
    链接地址:https://www.ketangku.com/wenku/file-462117.html
    相关资源 更多
  • 专题21 尺规作图(精讲精练)(原卷版).docx专题21 尺规作图(精讲精练)(原卷版).docx
  • 专题21 对称、平移、旋转 安徽省2023年中考数学一轮复习专题训练.docx专题21 对称、平移、旋转 安徽省2023年中考数学一轮复习专题训练.docx
  • 专题21 对称、平移、旋转 2023年中考数学一轮复习专题训练(北京专用).docx专题21 对称、平移、旋转 2023年中考数学一轮复习专题训练(北京专用).docx
  • 专题21 圆中的相似问题(解析版).docx专题21 圆中的相似问题(解析版).docx
  • 专题21 圆中的相似问题(原卷版).docx专题21 圆中的相似问题(原卷版).docx
  • 专题21 图形的相似(共29题)(教师版)(01期)-2023年中考数学真题分类训练.docx专题21 图形的相似(共29题)(教师版)(01期)-2023年中考数学真题分类训练.docx
  • 专题21 图形的相似(共29题)(学生版)(01期)-2023年中考数学真题分类训练.docx专题21 图形的相似(共29题)(学生版)(01期)-2023年中考数学真题分类训练.docx
  • 专题21 图形的相似(共20道)(教师版)(02期)-2023年中考数学真题分类训练.docx专题21 图形的相似(共20道)(教师版)(02期)-2023年中考数学真题分类训练.docx
  • 专题21 图形的相似(共20道)(学生版)(02期)-2023年中考数学真题分类训练.docx专题21 图形的相似(共20道)(学生版)(02期)-2023年中考数学真题分类训练.docx
  • 专题21 哲理感悟-备战2023年中考英语阅读理解热点话题分类训练(中考真题 名校最新模拟题).docx专题21 哲理感悟-备战2023年中考英语阅读理解热点话题分类训练(中考真题 名校最新模拟题).docx
  • 专题21 反比例函数-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(解析版).docx专题21 反比例函数-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(解析版).docx
  • 专题21 反比例函数-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(原卷版).docx专题21 反比例函数-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(原卷版).docx
  • 专题21 利用导数解决函数的恒成立问题(原卷版).docx专题21 利用导数解决函数的恒成立问题(原卷版).docx
  • 专题21 初升高检测卷(一)【练习】-2022年初升高英语无忧衔接(通用版).docx专题21 初升高检测卷(一)【练习】-2022年初升高英语无忧衔接(通用版).docx
  • 专题21 元素周期律-【题高分】2022-2023学年高一化学同步教学专题讲义(人教版2019必修第一册).docx专题21 元素周期律-【题高分】2022-2023学年高一化学同步教学专题讲义(人教版2019必修第一册).docx
  • 专题21 信息的传递、能源与可持续发展(原卷版)-备战2023年中考物理精选考点专练(知识清单+基础+拔高) .docx专题21 信息的传递、能源与可持续发展(原卷版)-备战2023年中考物理精选考点专练(知识清单+基础+拔高) .docx
  • 专题21 传统发酵技术及应用(解析版).docx专题21 传统发酵技术及应用(解析版).docx
  • 专题21 传统发酵技术及应用(原卷版).docx专题21 传统发酵技术及应用(原卷版).docx
  • 专题21 从不同的方向看_答案.docx专题21 从不同的方向看_答案.docx
  • 专题21 二次函数与等腰三角形存在问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版).docx专题21 二次函数与等腰三角形存在问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版).docx
  • 专题21 二次函数与等腰三角形存在问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版).docx专题21 二次函数与等腰三角形存在问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版).docx
  • 专题21 中国共产党领导人民站起来、富起来、强起来(解析版).docx专题21 中国共产党领导人民站起来、富起来、强起来(解析版).docx
  • 专题21 中国共产党领导人民站起来、富起来、强起来(原卷版).docx专题21 中国共产党领导人民站起来、富起来、强起来(原卷版).docx
  • 专题21 与圆相关的压轴题-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版).docx专题21 与圆相关的压轴题-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版).docx
  • 专题21 与二次函数有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版).docx专题21 与二次函数有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版).docx
  • 专题21 不等式选讲(教师版).docx专题21 不等式选讲(教师版).docx
  • 专题21 不等式选讲(学生版).docx专题21 不等式选讲(学生版).docx
  • 专题21 一线三等角模型证全等(解析版).docx专题21 一线三等角模型证全等(解析版).docx
  • 专题21 一次函数(题型归纳)(解析版).docx专题21 一次函数(题型归纳)(解析版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1