河北省2011年高考数学一轮复习精品导学案:2.4指数函数.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河北省 2011 年高 数学 一轮 复习 精品 导学案 2.4 指数函数
- 资源描述:
-
1、函数、导数及其应用第四节 指数函数【高考目标定位】一、考纲点击1了解指数函数模型的实际背景;2理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算;3理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点;4知道指数函数是一类重要的函数模型。二、热点、难点提示1指数函数在高中数学中占有十分重要的地位,是高考重点考查的对象,热点是指数函数的图象与性质的综合应用同时考查分类讨论思想和数形结合思想;2幂的运算是解决与指数有关问题的基础,常与指数函数交汇命题。【考纲知识梳理】1根式(1)根式的概念根式的概念符号表示备注如果,那么叫做的次方根当为奇数时,正数的次方根是一个正数,负数
2、的次方根是一个负数零的次方根是零当为偶数时,正数的次方根有两个,它们互为相反数负数没有偶次方根(2)两个重要公式;。2有理数指数幂(1)幂的有关概念正整数指数幂:;零指数幂:;负整数指数幂:正分数指数幂:;负分数指数幂: 0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。(2)有理数指数幂的性质aras=ar+s(a0,r、sQ);(ar)s=ars(a0,r、sQ);(ab)r=arbs(a0,b0,rQ);.3指数函数的图象与性质 y=axa10a0时,y1;x0时,0y0时,0y1;x1(3)在(-,+)上是增函数(3)在(
3、-,+)上是减函数注:如图所示,是指数函数(1)y=ax,(2)y=bx,(3),y=cx(4),y=dx的图象,如何确定底数a,b,c,d与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c1d11a1b1,cd1ab。即无论在轴的左侧还是右侧,底数按逆时针方向变大。【热点、难点精析】一、指数幂的化简与求值1相关链接指数幂的化简与求值的原则及结果要求(1)化简原则化负指数为正指数;化根式为分数指数幂;化小数为分数;注意运算的先后顺序。注:有理数指数幂的运算性质中,其底数都大于0,否则不能用性质运算。(2)结果要求若题目以根式形式给出,则结果用根式表示
4、;若题目以分数指数幂的形式给出,则结果用分数指数幂表示;结果不能同时含有根号和分数指数幂,也不能既有分母又有负指数幂。2例题解析例1(1)计算:;(2)化简:分析:(1)题目中给出的是分数指数幂,先看其是否符合运算法则的条件,如符合用法则进行下去,如不符合应再创设条件去求。(2)因为题目中的式子既有根式又有分数指数幂,先化为分数指数幂以便用法则运算。解:(1)原式=;(2)原式=例2已知,求的值解:,又,二、指数函数的图象及应用1相关链接(1)图象的变换1平移变换规律(1)水平平移:y=f(x+ )的图象,可由y=f(x)的图象向左( 0), 或向右( 0)的图象,可由yf(x)的图象上每点的
5、横坐标伸长(00, 0) 的图象变换规律,是上述平移变换与伸缩变换结合在一起的特殊情况,这一变换规律对一般函数y=Af(x+ ) (A0, 0)也成立。(2)从图象看性质函数的图象直观地反映了函数的基本性质图象在x轴上的身影可得出函数的定义域;图象在y轴上的身影可得出函数的值域;从左向右看,由图象的变化得出增减区间,进而得出最值;由图象是否关于原点(或y轴)对称得出函数是否为奇(偶)函数;由两个图象交战的横坐标可得方程的解。2例题解析例已知函数y=()|x+1|。(1) 作出图象;(2) 由图象指出其单调区间;(3) 由图象指出当x取什么值时函数有最值。分析:化去绝对值符号将函数写成分段函数的
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
