河北省石家庄二中2020届高三数学上学期第三次联考试题文含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河北省 石家庄 2020 届高三 数学 上学 第三次 联考 试题 解析
- 资源描述:
-
1、河北省石家庄二中2020届高三数学上学期第三次联考试题 文(含解析)第卷一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,若,则的取值范围是( )A. B. C. D. 【答案】A【解析】【分析】根据,得到,即可求解实数的取值范围,得到答案。【详解】由题意,集合,因为,则,即实数取值范围是。故选:A。【点睛】本题主要考查了利用集合的包含关系求解参数问题,其中解答中熟练集合的包含关系,列出相应的不等式是解答的关键,着重考查了推理与运算能力,属于基础题。2.己知命题p:,则为( )A. B. C. D. 【答案】C【解析】【分析】先改存在
2、量词为全称量词,再否定结论.【详解】:.故选C.【点睛】本题考查了含有一个量词的命题的否定,属于基础题.解题方法:先改量词,再否定结论.3.己知复数z满足(其中i为虚数单位),则( )A. B. C. 1D. 【答案】B【解析】【分析】根据i的幂运算性质可得,再由复数的除法运算可求得z,从而求出.【详解】,则,所以,.所以本题答案为B.【点睛】本题考查复数的乘除法和复数的模,解决复数问题,要通过复数的四则运算将复数表示为一般形式,结合复数相关知识求解,考查计算能力,属于基础题.4.中国当代数学著作算法统宗中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次
3、日行里数,请公仔细算相还”其意思为;“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第一天走了( )A. 24里B. 48里C. 96里D. 192里【答案】D【解析】【分析】每天行走的步数组成公比为的等比数列,根据前6项和为378列式可解得.【详解】设第天行走了步,则数列是等比数列,且公比,因为,所以,所以 ,所以第一天走了192里.故选D【点睛】本题考查了等比数列的前项和公式中的基本量的计算,属于基础题.5.已知函数为偶函数,且对于任意的,都有,设,则()A. B. C. D. 【答案】C【解析】【分析】首先判断函数在的单调性,然
4、后根据偶函数化简,然后比较2,的大小,比较的大小关系.【详解】若,则函数在是单调递增函数,并且函数是偶函数满足,即, 在单调递增,即.故选C.【点睛】本题考查利用函数的奇偶性和函数的单调性比较函数值的大小,意在考查函数性质的应用,意在考查转化和变形能力,属于基础题型.6.若函数的图像向左平移()个单位,所得的图像关于轴对称,则当最小时,( )A. B. C. D. 【答案】B【解析】【分析】根据平移变换得到解析式后,利用所得的图像关于轴对称列式,再求最小值.【详解】将函数的图像向左平移()个单位后,得到函数,因为其图像关于轴对称,所以,即,因为,所以时,取得最小值,此时.故选B.【点睛】本题考
5、查了三角函数图像的平移变换,以及对称轴,属于中档题.7.已知函数的图象在点处的切线的斜率为,则函数的大致图象是( )A. B. C. D. 【答案】A【解析】【分析】求得,得到函数在点处的切线的斜率为,得出函数,利用函数的奇偶性和特殊的函数的值,即可求解。【详解】由题意,函数,则,则在点处的切线的斜率为,即,可得,所以函数为奇函数,图象关于原点对称,排除B、D项,又由当时,排除C项,只有选项A项符合题意。故选:A。【点睛】本题主要考查了导数的几何意义,函数图象的识别,以及函数的性质的应用,其中解答利用导数的几何意义求得函数的解析式,结合函数的性质求解是解答的关键,着重考查了推理与运算能力,属于
6、基础题。8.已知两点,以及圆:,若圆上存在点,满足,则的取值范围是( )A. B. C. D. 【答案】D【解析】【分析】由题意可知:以AB为直径的圆与圆有公共点,从而得出两圆圆心距与半径的关系,列出不等式得出的范围【详解】,点在以,两点为直径的圆上,该圆方程为:,又点在圆上,两圆有公共点两圆的圆心距解得:故选D【点睛】本题考查了圆与圆位置关系,还考查了向量垂直的数量积表示,属于中档题9.在直角梯形ABCD中,E是BC的中点,则A. 32B. 48C. 80D. 64【答案】C【解析】【分析】由向量的基本运算展开,再分别求数量积即可【详解】,由数量积的几何意义可得:的值为与在方向投影的乘积,又
7、在方向的投影为,同理, 故选C.【点睛】本题考查向量的数量积,正确理解向量的数量积是解本题的关键,属于基础题10.已知直线与椭圆交于两点,且线段中点为,若直线(为坐标原点)的倾斜角为,则椭圆的离心率为( )A. B. C. D. 【答案】D【解析】【分析】利用点差法求解可得直线和斜率间的关系,进而得到,再根据椭圆离心率的定义可得所求【详解】设,点在椭圆上,两式相减整理得,即,椭圆的离心率为故选D【点睛】求椭圆离心率或其范围的方法:根据题意求出的值,再由离心率的定义直接求解由题意列出含有的方程(或不等式),借助于消去,然后转化成关于的方程(或不等式)求解11.已知三棱锥的所有顶点都在球的球面上,
8、平面,若球的表面积为,则三棱锥的侧面积的最大值为( )A. B. C. D. 【答案】A【解析】【分析】由题意画出图形,设球O得半径为R,AB=x,AC=y,由球O的表面积为29,可得x2+y2=25,写出侧面积,再由基本不等式求最值【详解】设球O得半径为R,AB=x,AC=y,由4R2=29,得4R2=29又x2+y2+22=(2R)2,得x2+y2=25三棱锥A-BCD的侧面积:S=SABD+SACD+SABC=由x2+y22xy,得xy当且仅当x=y=时取等号,由(x+y)2=x2+2xy+y22(x2+y2),得x+y5,当且仅当x=y=时取等号,S5+=当且仅当x=y=时取等号. 三
9、棱锥A-BCD的侧面积的最大值为.故选A.【点睛】本题考查三棱锥的外接球、三棱锥的侧面积、基本不等式等基础知识,考查空间想象能力、逻辑思维能力、运算求解能力,考查数学转化思想方法与数形结合的解题思想方法,是中档题12.已知定义在上的函数关于轴对称,其导函数为,当时,不等式.若对,不等式恒成立,则正整数的最大值为( )A. B. C. D. 【答案】B【解析】【分析】构造函数,求出,由题可得是在上的奇函数且在上为单调递增函数,将转化成,利用在上为单调递增函数可得:恒成立,利用导数求得,解不等式可得,问题得解【详解】因为,所以,令,则,又因为是在上的偶函数,所以是在上的奇函数,所以是在上的单调递增
10、函数,又因为,可化为,即,又因为是在上的单调递增函数,所以恒成立,令,则,因为,所以在单调递减,在上单调递增,所以,则,所以.所以正整数的最大值为2.故选B【点睛】本题主要考查了函数与导数的应用,函数的奇偶性、单调性、不等式恒成立等基础知识,考查分析和转化能力,推理论证能力,运算求解能力,构造能力,属于难题.第卷二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的右焦点为,则到其中一条渐近线的距离为_【答案】【解析】【分析】先求得双曲线焦点到渐近线的距离为,由此求得到渐近线的距离.【详解】对于任意双曲线,其中一个焦点到渐近线(即)的距离为.又,焦点到其中一条渐近线的距离为.故填:
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
