2019高考数学(文)通用版二轮精准提分练习:第三篇 (一)函数与方程思想、数形结合思想 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019高考数学文通用版二轮精准提分练习:第三篇 一函数与方程思想、数形结合思想 WORD版含解析 2019 高考 数学 通用版 二轮 精准 练习 第三 函数 方程 思想 结合 WORD 解析
- 资源描述:
-
1、数学教学的最终目标,是要让学生会用数学的眼光观察现实世界,会用数学的思维思考现实世界.数学素养就是指学生学习数学应当达成的有特定意义的综合性能力,数学核心素养高于具体的数学知识技能,具有综合性、整体性和持久性,反映数学本质与数学思想,数学核心素养是数学思想方法在具体学习领域的表现.二轮复习中如果能自觉渗透数学思想,加强个人数学素养的培养,就会在复习中高屋建瓴,对整体复习起到引领和导向作用.函数与方程思想、数形结合思想一、函数与方程思想在不等式中的应用函数与不等式的相互转化,把不等式转化为函数,借助函数的图象和性质可解决相关的问题,常涉及不等式恒成立问题、比较大小问题.一般利用函数思想构造新函数
2、,建立函数关系求解.1.设0a1,e为自然对数的底数,则a,ae,ea1的大小关系为()A.ea1aae B.aeaea1C.aeea1a D.aea10,则f(x)ex1,f(x)在(0,)上是增函数,且f(0)0,f(x)0,ex1x,即ea1a.又yax(0aae,从而ea1aae.2.已知定义在R上的函数g(x)的导函数为g(x),满足g(x)g(x)1的解集为_.答案(,0)解析函数g(x)的图象关于直线x2对称,g(0)g(4)1.设f(x),则f(x).又g(x)g(x)0,f(x)f(0),x2m4x恒成立,则x的取值范围是_.答案(,1)(2,)解析t,8,f(t).问题转化
3、为m(x2)(x2)20恒成立,当x2时,不等式不成立,x2.令g(m)m(x2)(x2)2,m.问题转化为g(m)在上恒大于0,则即解得x2或x1.4.若 x2,1时,不等式ax3x24x30恒成立,则实数a的取值范围是 _.答案6,2解析当2x0时,不等式转化为a.令f(x)(2x0),则f(x),故f(x)在2,1上单调递减,在(1,0)上单调递增,此时有af(x)minf(1)2.当x0时,不等式恒成立.当0x1时,a,则f(x)在(0,1上单调递增,此时有af(x)maxf(1)6.综上,实数a的取值范围是6,2.二、函数与方程思想在数列中的应用数列的通项与前n项和是自变量为正整数的
4、函数,可用函数的观点去处理数列问题,常涉及最值问题或参数范围问题,一般利用二次函数;等差数列或等比数列的基本量的计算一般化归为方程(组)来解决.5.已知an是等差数列,a1010,其前10项和S1070,则其公差d等于()A. B.C. D.答案D解析设等差数列的首项为a1,公差为d,则即解得d.6.已知在数列an中,前n项和为Sn,且Snan,则的最大值为()A.3 B.1 C.3 D.1答案C解析当n2时,Snan,Sn1an1,两式作差可得ananan1,即1.由函数y1在(1,)上是减函数,可得在n2时取得最大值3.7.在等差数列an中,若a10, 设Snf(n),则f(n)为二次函数
5、,又由f(7)f(17)知,f(n)的图象开口向上,关于直线n12对称,故Sn取最小值时n的值为12.8.设等差数列an的前n项和为Sn,若S42,S63,则nSn的最小值为_.答案9解析由解得a12,d1,所以Sn ,故nSn.令f(x),则f(x)x25x,令f(x)0,得x0或x, f(x)在上单调递减,在上单调递增.又n是正整数,故当n3时,nSn取得最小值9.三、函数与方程思想在解析几何中的应用解析几何中求斜率、截距、半径、点的坐标、离心率等几何量经常要用到方程(组)的思想;直线与圆锥曲线的位置关系问题,可以通过转化为一元二次方程,利用判别式进行解决;求变量的取值范围和最值问题常转化
6、为求函数的值域、最值,用函数的思想分析解答.9.(2016全国)以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|4,|DE|2,则C的焦点到准线的距离为()A.2 B.4 C.6 D.8答案B解析不妨设抛物线C:y22px(p0),圆的方程设为x2y2r2(r0),如图,又可设A(x0,2),D,点A(x0,2)在抛物线y22px上,82px0,点A(x0,2)在圆x2y2r2上,x8r2,点D在圆x2y2r2上,52r2,联立,解得p4(负值舍去),即C的焦点到准线的距离为p4,故选B.10.如图,已知双曲线C:1(a0,b0)的右顶点为A,O为坐标原点,以A
7、为圆心的圆与双曲线C的一条渐近线交于P,Q两点,若PAQ60,且3,则双曲线C的离心率为()A. B. C. D.答案B解析因为PAQ60,|AP|AQ|,所以|AP|AQ|PQ|,设|AQ|2R,又3,则|OP|PQ|R.双曲线C的渐近线方程是yx,A(a,0),所以点A到直线yx的距离d,所以2(2R)2R23R2,即a2b23R2(a2b2),在OQA中,由余弦定理得,|OA|2|OQ|2|QA|22|OQ|QA|cos 60(3R)2(2R)223R2R7R2a2.由得所以双曲线C的离心率为e.11.设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线ykx(k0)与A
8、B相交于点D,与椭圆相交于E,F两点.若6,则k的值为_.答案或解析依题意得椭圆的方程为y21,直线AB,EF的方程分别为x2y2,ykx(k0).如图,设D(x0,kx0),E(x1,kx1),F(x2,kx2),其中x1x2,且x1,x2满足方程(14k2)x24,故x2x1 .由6知,x0x16(x2x0),得x0(6x2x1)x2 .由点D在AB上知x02kx02,得x0.所以,化简得24k225k60,解得k或k.12.已知直线l:yk(x1)与抛物线C:y24x交于不同的两点A,B,且以AB为直径的圆过抛物线C的焦点F,则k_.答案或解析点F的坐标为(1,0),设A(x1,y1),
9、B(x2,y2),则y1k(x11),y2k(x21),当k0时,l与C只有一个交点,不合题意,因此k0.将yk(x1)代入y24x,消去y,得k2x22(k22)xk20,依题意知,x1,x2是的不相等的两个实根,则由以AB为直径的圆过F,得AFBF,即kAFkBF1,所以1,即x1x2y1y2(x1x2)10,所以x1x2k2(x11)(x21)(x1x2)10,所以(1k2)x1x2(k21)(x1x2)1k20,把x1x2,x1x21代入得2k210,解得k,经检验k适合式.综上所述,k.一、数形结合思想在解方程或函数零点问题中的应用讨论方程的解(或函数零点)的问题一般可以构造两个函数
10、,将方程解的个数转化为两条曲线的交点个数.构造函数时,要先对方程进行变形,尽量构造两个比较熟悉的函数.1.(2018咸阳模拟)函数f(x)2x的零点个数为()A.0 B.1 C.2 D.3答案B解析在同一平面直角坐标系下,作出函数y12x和y2的图象,如图所示.函数f(x)2x的零点个数等价于2x的根的个数,等价于函数y12x和y2图象的交点个数.由图可知只有一个交点,所以有一个零点.故选B.2.若关于x的方程kx2有四个不同的实数解,则k的取值范围为_.答案解析x0是方程的一个实数解;当x0时,方程kx2可化为(x4)|x|,x4,k0,设f(x)(x4)|x|(x4且x0),y,则两函数图
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-574051.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
