分享
分享赚钱 收藏 举报 版权申诉 / 20

类型2019高考数学(文)通用版二轮精准提分练习:第三篇 (一)函数与方程思想、数形结合思想 WORD版含解析.docx

  • 上传人:a****
  • 文档编号:574051
  • 上传时间:2025-12-10
  • 格式:DOCX
  • 页数:20
  • 大小:912.63KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2019高考数学文通用版二轮精准提分练习:第三篇 一函数与方程思想、数形结合思想 WORD版含解析 2019 高考 数学 通用版 二轮 精准 练习 第三 函数 方程 思想 结合 WORD 解析
    资源描述:

    1、数学教学的最终目标,是要让学生会用数学的眼光观察现实世界,会用数学的思维思考现实世界.数学素养就是指学生学习数学应当达成的有特定意义的综合性能力,数学核心素养高于具体的数学知识技能,具有综合性、整体性和持久性,反映数学本质与数学思想,数学核心素养是数学思想方法在具体学习领域的表现.二轮复习中如果能自觉渗透数学思想,加强个人数学素养的培养,就会在复习中高屋建瓴,对整体复习起到引领和导向作用.函数与方程思想、数形结合思想一、函数与方程思想在不等式中的应用函数与不等式的相互转化,把不等式转化为函数,借助函数的图象和性质可解决相关的问题,常涉及不等式恒成立问题、比较大小问题.一般利用函数思想构造新函数

    2、,建立函数关系求解.1.设0a1,e为自然对数的底数,则a,ae,ea1的大小关系为()A.ea1aae B.aeaea1C.aeea1a D.aea10,则f(x)ex1,f(x)在(0,)上是增函数,且f(0)0,f(x)0,ex1x,即ea1a.又yax(0aae,从而ea1aae.2.已知定义在R上的函数g(x)的导函数为g(x),满足g(x)g(x)1的解集为_.答案(,0)解析函数g(x)的图象关于直线x2对称,g(0)g(4)1.设f(x),则f(x).又g(x)g(x)0,f(x)f(0),x2m4x恒成立,则x的取值范围是_.答案(,1)(2,)解析t,8,f(t).问题转化

    3、为m(x2)(x2)20恒成立,当x2时,不等式不成立,x2.令g(m)m(x2)(x2)2,m.问题转化为g(m)在上恒大于0,则即解得x2或x1.4.若 x2,1时,不等式ax3x24x30恒成立,则实数a的取值范围是 _.答案6,2解析当2x0时,不等式转化为a.令f(x)(2x0),则f(x),故f(x)在2,1上单调递减,在(1,0)上单调递增,此时有af(x)minf(1)2.当x0时,不等式恒成立.当0x1时,a,则f(x)在(0,1上单调递增,此时有af(x)maxf(1)6.综上,实数a的取值范围是6,2.二、函数与方程思想在数列中的应用数列的通项与前n项和是自变量为正整数的

    4、函数,可用函数的观点去处理数列问题,常涉及最值问题或参数范围问题,一般利用二次函数;等差数列或等比数列的基本量的计算一般化归为方程(组)来解决.5.已知an是等差数列,a1010,其前10项和S1070,则其公差d等于()A. B.C. D.答案D解析设等差数列的首项为a1,公差为d,则即解得d.6.已知在数列an中,前n项和为Sn,且Snan,则的最大值为()A.3 B.1 C.3 D.1答案C解析当n2时,Snan,Sn1an1,两式作差可得ananan1,即1.由函数y1在(1,)上是减函数,可得在n2时取得最大值3.7.在等差数列an中,若a10, 设Snf(n),则f(n)为二次函数

    5、,又由f(7)f(17)知,f(n)的图象开口向上,关于直线n12对称,故Sn取最小值时n的值为12.8.设等差数列an的前n项和为Sn,若S42,S63,则nSn的最小值为_.答案9解析由解得a12,d1,所以Sn ,故nSn.令f(x),则f(x)x25x,令f(x)0,得x0或x, f(x)在上单调递减,在上单调递增.又n是正整数,故当n3时,nSn取得最小值9.三、函数与方程思想在解析几何中的应用解析几何中求斜率、截距、半径、点的坐标、离心率等几何量经常要用到方程(组)的思想;直线与圆锥曲线的位置关系问题,可以通过转化为一元二次方程,利用判别式进行解决;求变量的取值范围和最值问题常转化

    6、为求函数的值域、最值,用函数的思想分析解答.9.(2016全国)以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|4,|DE|2,则C的焦点到准线的距离为()A.2 B.4 C.6 D.8答案B解析不妨设抛物线C:y22px(p0),圆的方程设为x2y2r2(r0),如图,又可设A(x0,2),D,点A(x0,2)在抛物线y22px上,82px0,点A(x0,2)在圆x2y2r2上,x8r2,点D在圆x2y2r2上,52r2,联立,解得p4(负值舍去),即C的焦点到准线的距离为p4,故选B.10.如图,已知双曲线C:1(a0,b0)的右顶点为A,O为坐标原点,以A

    7、为圆心的圆与双曲线C的一条渐近线交于P,Q两点,若PAQ60,且3,则双曲线C的离心率为()A. B. C. D.答案B解析因为PAQ60,|AP|AQ|,所以|AP|AQ|PQ|,设|AQ|2R,又3,则|OP|PQ|R.双曲线C的渐近线方程是yx,A(a,0),所以点A到直线yx的距离d,所以2(2R)2R23R2,即a2b23R2(a2b2),在OQA中,由余弦定理得,|OA|2|OQ|2|QA|22|OQ|QA|cos 60(3R)2(2R)223R2R7R2a2.由得所以双曲线C的离心率为e.11.设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线ykx(k0)与A

    8、B相交于点D,与椭圆相交于E,F两点.若6,则k的值为_.答案或解析依题意得椭圆的方程为y21,直线AB,EF的方程分别为x2y2,ykx(k0).如图,设D(x0,kx0),E(x1,kx1),F(x2,kx2),其中x1x2,且x1,x2满足方程(14k2)x24,故x2x1 .由6知,x0x16(x2x0),得x0(6x2x1)x2 .由点D在AB上知x02kx02,得x0.所以,化简得24k225k60,解得k或k.12.已知直线l:yk(x1)与抛物线C:y24x交于不同的两点A,B,且以AB为直径的圆过抛物线C的焦点F,则k_.答案或解析点F的坐标为(1,0),设A(x1,y1),

    9、B(x2,y2),则y1k(x11),y2k(x21),当k0时,l与C只有一个交点,不合题意,因此k0.将yk(x1)代入y24x,消去y,得k2x22(k22)xk20,依题意知,x1,x2是的不相等的两个实根,则由以AB为直径的圆过F,得AFBF,即kAFkBF1,所以1,即x1x2y1y2(x1x2)10,所以x1x2k2(x11)(x21)(x1x2)10,所以(1k2)x1x2(k21)(x1x2)1k20,把x1x2,x1x21代入得2k210,解得k,经检验k适合式.综上所述,k.一、数形结合思想在解方程或函数零点问题中的应用讨论方程的解(或函数零点)的问题一般可以构造两个函数

    10、,将方程解的个数转化为两条曲线的交点个数.构造函数时,要先对方程进行变形,尽量构造两个比较熟悉的函数.1.(2018咸阳模拟)函数f(x)2x的零点个数为()A.0 B.1 C.2 D.3答案B解析在同一平面直角坐标系下,作出函数y12x和y2的图象,如图所示.函数f(x)2x的零点个数等价于2x的根的个数,等价于函数y12x和y2图象的交点个数.由图可知只有一个交点,所以有一个零点.故选B.2.若关于x的方程kx2有四个不同的实数解,则k的取值范围为_.答案解析x0是方程的一个实数解;当x0时,方程kx2可化为(x4)|x|,x4,k0,设f(x)(x4)|x|(x4且x0),y,则两函数图

    11、象有三个非零交点.f(x)(x4)|x|的大致图象如图所示,由图可得0.所以k的取值范围为.3.设函数f(x)cos x,则方程f(x)所有实根的和为_.答案解析由f(x)cos x,得cos x,令y1,y2cos x.在同一坐标系内作出两函数图象(图略),可知两图象只有一个交点.方程f(x)的实根之和为.4.已知函数f(x)若方程f(x)mx恰有四个不相等的实数根,则实数m的取值范围是_.答案解析方程f(x)mx恰有四个不相等的实数根可化为函数f(x)与函数ymx的图象有四个不同的交点,如图所示.由题意知,C,B(1,0),故kBC.当x1时,f(x)ln x,f(x),设切点A的坐标为(

    12、x1,ln x1),则,解得x1,故kAC.结合图象可得,实数m的取值范围是.二、数形结合思想在求解不等式或参数范围中的应用构建函数模型,分析函数的单调性并结合其图象特征研究量与量之间的大小关系、求参数的取值范围或解不等式.5.(2018全国 )设函数f(x)则满足f(x1)f(2x)的x的取值范围是()A.(,1 B.(0,)C.(1,0) D.(,0)答案D解析方法一当即x1时,f(x1)f(2x)即为2(x1)22x,即(x1)2x,解得x1.因此不等式的解集为(,1.当时,不等式组无解.当即1x0时,f(x1)f(2x)即122x,解得x0.因此不等式的解集为(1,0).当即x0时,f

    13、(x1)1,f(2x)1,不合题意.综上,不等式f(x1)f(2x)的解集为(,0).故选D.方法二f(x)函数f(x)的图象如图所示.由图可知,当x10且2x0时,函数f(x)为减函数,故f(x1)f(2x)转化为x12x.此时x1.当2x0且x10时,f(2x)1,f(x1)1,满足f(x1)f(2x).此时1x0.综上,不等式f(x1)f(2x)的解集为(,1(1,0)(,0).故选D.6.设A,B在圆x2y21上运动,且|AB|,点P在直线l:3x4y120上运动,则|的最小值为()A.3 B.4C. D.答案D解析设AB的中点为D,由平行四边形法则可知2,所以当且仅当O,D,P三点共

    14、线时,|取得最小值,此时OP垂直于直线3x4y120,OPAB,因为圆心到直线的距离为,|OD|,所以|的最小值为2.7.若不等式|x2a|xa1对xR恒成立,则实数a的取值范围是_.答案解析作出y1|x2a|和y2xa1的简图,如图所示.依题意得故a.8.已知函数f(x)若存在两个不相等的实数x1,x2,使得f(x1)f(x2),则实数a的取值范围为_.答案0,)解析根据题意知f(x)是一个分段函数,当x1时,是一个开口向下的二次函数,对称轴方程为xa;当x1时,如图(1)所示,符合题意;当0a1时,如图(2)所示,符合题意;当a0).若圆C上存在点P,使得 APB90,则 m的最大值为()

    15、A.7 B.6 C.5 D.4答案B解析根据题意,画出示意图,如图所示,则圆心C的坐标为(3,4),半径r1,且|AB|2m,因为APB90,连接OP,可知|OP|AB|m.要求m的最大值,即求圆C上的点P到原点O的最大距离.因为|OC|5,所以|OP|max|OC|r6,即m的最大值为6.10.设双曲线C:1(a0,b0)的左、右顶点分别为A1,A2,左、右焦点分别为F1,F2,以F1F2为直径的圆与双曲线左支的一个交点为P.若以A1A2为直径的圆与直线PF2相切,则双曲线C的离心率为()A. B. C.2 D.答案D解析如图所示,设以A1A2为直径的圆与直线PF2的切点为Q,连接OQ,则O

    16、QPF2.又PF1PF2,O为F1F2的中点,所以|PF1|2|OQ|2a.又|PF2|PF1|2a,所以|PF2|4a.在RtF1PF2中,由|PF1|2|PF2|2|F1F2|2,得4a216a220a24c2,即e.11.已知抛物线的方程为x28y,F是其焦点,点A(2,4),在此抛物线上求一点P,使APF的周长最小,此时点P的坐标为_.答案解析因为(2)21,设af(2)1,bef(3)1,则a,b的大小关系为()A.ab C.ab D.无法确定答案A解析令g(x)exf(x)ex,则g(x)exf(x)f(x)10,即g(x)在R上为增函数.所以g(3)g(2),即e3f(3)e3e

    17、2f(2)e2,整理得ef(3)1f(2)1,即ab.2.(2018宣城调研)定义在R上的奇函数f(x)满足f(x2)f(x),且在0,1上是减函数,则有()A.fffB.fffC.fffD.fff答案C解析因为f(x2)f(x)f(x),所以函数f(x)的图象关于直线x1对称,又T4,作图,由图知ff0,b0)的一个焦点F作一条渐近线的垂线,垂足为点A,与另一条渐近线交于点B,若2,|3,则该双曲线的标准方程为()A.1 B.1C.1 D.1答案A解析如图,因为2,所以A为线段FB的中点,所以23,又13,所以31180,所以160,所以,又|3,所以b3,a,所以该双曲线的标准方程为1,故

    18、选A.4.过双曲线1(a0,b0)的右焦点F作直线yx的垂线,垂足为A,交双曲线左支于B点,若2,则该双曲线的离心率为()A. B.2 C. D.答案C解析设F(c,0),则直线AB的方程为y(xc),代入双曲线渐近线方程yx,得A. 由2,可得B,把B点坐标代入1,得1,c25a2,离心率e.5.如果实数x,y满足(x2)2y23,则的最大值为()A. B. C. D.答案D解析方程(x2)2y23的几何意义为平面直角坐标系内的圆,圆心为M(2,0),半径为r(如图),而则表示圆M上的点A(x,y)与坐标原点O(0,0)的连线的斜率.所以该问题可转化为动点A在以M(2,0)为圆心,以为半径的

    19、圆上移动,求直线OA的斜率的最大值.由图可知当OAM在第一象限,且直线OA与圆M相切时,OA的斜率最大,此时OM2,AM,OAAM,则OA1,tanAOM,故的最大值为,故选D.6.已知函数f(x)|lg(x1)|,若1ab且f(a)f(b),则a2b的取值范围为()A.(32,) B.32,)C.(6,) D.6,)答案C解析由图象可知b2,1a2,lg(a1)lg(b1),则a,则a2b2b2(b1)3,由对勾函数的性质知,当b时,f(b)2(b1)3单调递增,b2,a2b2b6.7.(2018东莞模拟)已知函数f(x)若不等式f(x)mx恒成立,则实数m的取值范围为()A.32,32B.

    20、32,0C.32,0D.(,3232,)答案C解析函数f(x)及ymx的图象如图所示,由图象可知,当m0时,不等式f(x)mx不恒成立,设过原点的直线与函数f(x)x23x2(x0时能成立,令g(x)ex(x23x3),则ag(x)min,而g(x)ex(x2x),由g(x)0,可得x(,0)(1,),由g(x)0,可得x(0,1).据此可知,函数g(x)在区间(0,)上的最小值为g(1)e,ae.综上可得,实数a的最小值为e.9.已知正四棱锥的体积为,则正四棱锥的侧棱长的最小值为_.答案2解析如图所示,设正四棱锥的底面边长为a,高为h.则该正四棱锥的体积Va2h,故a2h32,即a2.则其侧

    21、棱长为l.令f(h)h2,则f(h)2h,令f(h)0,解得h2.当h(0,2)时,f(h)0,f(h)单调递增,所以当h2时,f(h)取得最小值f(2)2212,故lmin2.10.若函数f(x)|2x2|b有两个零点,则实数b的取值范围是_.答案 (0,2)解析由f(x)|2x2|b有两个零点,可得|2x2|b有两个不等的实根,从而可得函数y1|2x2|的图象与函数y2b的图象有两个交点,如图所示.结合函数的图象,可得0b0在(2,)上恰成立,则实数a的取值集合为_.答案1,3解析关于x的不等式x1a22a0在(2,)上恰成立函数f(x)x在(2,)上的值域为(a22a1,).由f(x)x,x(2,),可得f(x)10,所以f(x)x在(2,)上为增函数,所以f(x)f(2)4.又关于x的不等式xa22a1在(2,)上恰成立,所以a22a14,解得a1或a3.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2019高考数学(文)通用版二轮精准提分练习:第三篇 (一)函数与方程思想、数形结合思想 WORD版含解析.docx
    链接地址:https://www.ketangku.com/wenku/file-574051.html
    相关资源 更多
  • 专题10推理篇——判断与推理(讲义)(原卷版).docx专题10推理篇——判断与推理(讲义)(原卷版).docx
  • 专题10截长补短模型综合应用(专项训练)(能力提升)(解析版).docx专题10截长补短模型综合应用(专项训练)(能力提升)(解析版).docx
  • 专题10截长补短模型综合应用(专项训练)(能力提升)(原卷版).docx专题10截长补短模型综合应用(专项训练)(能力提升)(原卷版).docx
  • 专题10定语从句(练习)(原卷版).docx专题10定语从句(练习)(原卷版).docx
  • 专题10天体运动(解析版).docx专题10天体运动(解析版).docx
  • 专题10天体运动(原卷版).docx专题10天体运动(原卷版).docx
  • 专题10压强(测试)(解析版).docx专题10压强(测试)(解析版).docx
  • 专题10压强(测试)(原卷版).docx专题10压强(测试)(原卷版).docx
  • 专题10功和机械能(原卷版).docx专题10功和机械能(原卷版).docx
  • 专题10功和机械能 (解析版).docx专题10功和机械能 (解析版).docx
  • 专题10函数综合应用 -【中职专用】中职高考数学二轮复习专项突破.docx专题10函数综合应用 -【中职专用】中职高考数学二轮复习专项突破.docx
  • 专题10函数的图象-2021年新高考数学基础考点一轮复习.docx专题10函数的图象-2021年新高考数学基础考点一轮复习.docx
  • 专题10二次函数交点综合应用(知识解读)-备战2023年中考数学《重难点解读•专项训练》(全国通用)(解析版).docx专题10二次函数交点综合应用(知识解读)-备战2023年中考数学《重难点解读•专项训练》(全国通用)(解析版).docx
  • 专题10二次函数交点综合应用(知识解读)-备战2023年中考数学《重难点解读•专项训练》(全国通用)(原卷版).docx专题10二次函数交点综合应用(知识解读)-备战2023年中考数学《重难点解读•专项训练》(全国通用)(原卷版).docx
  • 专题10二次函数交点综合应用(专项训练)(解析版).docx专题10二次函数交点综合应用(专项训练)(解析版).docx
  • 专题10二次函数交点综合应用(专项训练)(原卷版).docx专题10二次函数交点综合应用(专项训练)(原卷版).docx
  • 专题102020-2021年广东省中考英语考前必背书面表达50篇.docx专题102020-2021年广东省中考英语考前必背书面表达50篇.docx
  • 专题10 三角函数【多选题】(解析版).docx专题10 三角函数【多选题】(解析版).docx
  • 专题10 三角函数【多选题】(原卷版).docx专题10 三角函数【多选题】(原卷版).docx
  • 专题10 2022年中考英语易错题精讲精练-动词时态.docx专题10 2022年中考英语易错题精讲精练-动词时态.docx
  • 专题1.复分解反应与离子共存(讲义)-2022-2023学年九年级上册科学讲练课堂(浙教版).docx专题1.复分解反应与离子共存(讲义)-2022-2023学年九年级上册科学讲练课堂(浙教版).docx
  • 专题1.名词考点聚焦和精讲 (原卷版).docx专题1.名词考点聚焦和精讲 (原卷版).docx
  • 专题1.9 正方形的性质与判定(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx专题1.9 正方形的性质与判定(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx
  • 专题1.9 数轴(巩固篇)(专项练习)-2022-2023学年七年级数学上册基础知识专项讲练(人教版).docx专题1.9 数轴(巩固篇)(专项练习)-2022-2023学年七年级数学上册基础知识专项讲练(人教版).docx
  • 专题1.9 探索三角形全等的条件(ASAAAS)(直通中考)-2023-2024学年八年级数学上册基础知识专项突破讲与练(苏科版).docx专题1.9 探索三角形全等的条件(ASAAAS)(直通中考)-2023-2024学年八年级数学上册基础知识专项突破讲与练(苏科版).docx
  • 专题1.9 平行线中的折叠问题(分层练习)(基础练)-2023-2024学年七年级数学下册全章复习与专题突破讲与练(浙教版).docx专题1.9 平行线中的折叠问题(分层练习)(基础练)-2023-2024学年七年级数学下册全章复习与专题突破讲与练(浙教版).docx
  • 专题1.9 二次根式的加减(巩固篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx专题1.9 二次根式的加减(巩固篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx
  • 专题1.9 二次函数的图象与性质常考知识点分类专题(培优练)-2023-2024学年九年级数学上册全章复习与专题突破讲与练(浙教版).docx专题1.9 二次函数的图象与性质常考知识点分类专题(培优练)-2023-2024学年九年级数学上册全章复习与专题突破讲与练(浙教版).docx
  • 专题1.9 二次函数y=ax² k(a≠0)的图象与性质(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(浙教版).docx专题1.9 二次函数y=ax² k(a≠0)的图象与性质(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(浙教版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1