2020-2021学年新教材高考数学 第八章 立体几何 5 考点2 面面垂直的判定与性质1练习(含解析)(选修2).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020-2021学年新教材高考数学 第八章 立体几何 考点2 面面垂直的判定与性质1练习含解析选修2 2020 2021 学年 新教材 高考 数学 第八 考点 面面 垂直 判定 性质 练习 解析
- 资源描述:
-
高考真题(2019北京卷(文)如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.()求证:BD平面PAC;()若ABC=60,求证:平面PAB平面PAE;()棱PB上是否存在点F,使得CF平面PAE?说明理由.【解析】()证明:因为平面,所以;因为底面是菱形,所以;因为,平面,所以平面.()证明:因为底面是菱形且,所以为正三角形,所以,因为,所以;因为平面,平面,所以;因为所以平面,平面,所以平面平面.()存在点为中点时,满足平面;理由如下:分别取的中点,连接,在三角形中,且;在菱形中,为中点,所以且,所以且,即四边形为平行四边形,所以;又平面,平面,所以平面.【答案】()见解析;()见解析;()见解析.(2019全国III卷(文)图1是由矩形和菱形组成的一个平面图形,其中,将其沿折起使得与重合,连结,如图2.(1)证明图2中的四点共面,且平面平面;(2)求图2中的四边形的面积.【解析】(1)证:,又因为和粘在一起.,A,C,G,D四点共面.又.平面BCGE,平面ABC,平面ABC平面BCGE,得证.(2)取的中点,连结.因为,平面BCGE,所以平面BCGE,故,由已知,四边形BCGE是菱形,且得,故平面DEM。因此。在中,DE=1,故。所以四边形ACGD的面积为4.【答案】(1)见详解;(2)4.
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-580061.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
