分享
分享赚钱 收藏 举报 版权申诉 / 20

类型2022-2023学年人教版九年级数学上册第二十一章一元二次方程重点解析试卷(含答案详解).docx

  • 上传人:a****
  • 文档编号:635349
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:20
  • 大小:313.82KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 人教版 九年级 数学 上册 第二十一 一元 二次方程 重点 解析 试卷 答案 详解
    资源描述:

    1、九年级数学上册第二十一章一元二次方程重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在解一元二次方程x2+px+q0时,小红看错了常数项q,得到方程的两个根是3,1小明看错了一次项系数P,得到方程

    2、的两个根是5,4,则原来的方程是()Ax2+2x30Bx2+2x200Cx22x200Dx22x302、一元二次方程有实数根,则k的取值范围是()A且BC且D或3、某校组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请个队参赛,则满足的关系式是()ABCD4、下列方程中,有两个相等实数根的是()ABCD5、已知等腰三角形的两边长分别是一元二次方程的两根,则该等腰三角形的底边长为()A2B4C8D2或46、抛物线的对称轴为直线若关于的一元二次方程(为实数)在的范围内有实数根,则的取值范围是()ABCD7、关于x的方程有两个

    3、实数根,且,那么m的值为()ABC或1D或48、对于一元二次方程,下列说法:若,则;若方程有两个不相等的实根,则方程必有两个不相等的实根;若是方程的一个根,则一定有成立;若是一元二次方程的根,则其中正确的有()A个B个C个D个9、若一元二次方程的两根为,则的值是()A4B2C1D210、用配方法解方程时,下列变形正确的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一元二次方程的解为_2、已知一元二次方程ax2+bx+c=0(a0)有一个根为-1,则a-b+c=_3、已知x=2是关于x的一元二次方程kx2+(k22)x+2k+4=0的一个根,则k的值为_4

    4、、若关于x的一元二次方程有两个不相等的实数根,则m的值可以是_(写出一个即可)5、用求根公式解方程,先求得_,则_,_三、解答题(5小题,每小题10分,共计50分)1、用指定方法解下列方程:(1)2x2-5x+10(公式法);(2)x2-8x+10(配方法)2、(1)计算:(2)解方程:2(x3)2503、已知正方形ABCD的对角线AC,BD相交于点O(1)如图1,E,G分别是OB,OC上的点,CE与DG的延长线相交于点F若DFCE,求证:OEOG;(2)如图2,H是BC上的点,过点H作EHBC,交线段OB于点E,连结DH交CE于点F,交OC于点G若OEOG,求证:ODGOCE;当AB1时,求

    5、HC的长4、如果方程与方程有且只有一个公共根,求a的值5、解下列一元二次方程(1)(2)-参考答案-一、单选题1、B【解析】【分析】分别按照看错的情况构建出一元二次方程,再舍去错误信息,从而可得正确答案.【详解】解: 小红看错了常数项q,得到方程的两个根是3,1,所以此时方程为: 即: 小明看错了一次项系数P,得到方程的两个根是5,4,所以此时方程为: 即: 从而正确的方程是: 故选:【考点】本题考查的是根据一元二次方程的根构建一元二次方程,掌握利用一元二次方程的根构建方程的方法是解题的关键.2、A【解析】【分析】根据一元二次方程二次项系数不为0和0列不等式即可【详解】解:由一元二次方程有实数

    6、根,可列不等式组为:,解得,且,故选:A【考点】本题考查了一元二次方程根的判别式,解题关键是熟练运用根的判别式列不等式,注意:一元二次方程二次项系数不为03、B【解析】【分析】关系式为:球队总数每支球队需赛的场数2=47,把相关数值代入即可【详解】解:每支球队都需要与其他球队赛(x-1)场,但2队之间只有1场比赛,所以可列方程为:故答案为:B【考点】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以24、A【解析】【分析】根据根的判别式逐一判断即可【详解】A.变形为,此时=4-4=0,此方程有两个相等的实数根,故选项

    7、A正确;B.中=0-4=-40,此时方程无实数根,故选项B错误;C.整理为,此时=4+12=160,此方程有两个不相等的实数根,故此选项错误;D.中,=40,此方程有两个不相等的实数根,故选项D错误.故选:A.【考点】本题主要考查根的判别式,熟练掌握根的情况与判别式间的关系是解题的关键5、A【解析】【分析】解一元二次方程求出方程的解,得出三角形的边长,用三角形存在的条件分类讨论边长,即可得出答案【详解】解:x26x+8=0(x4)(x2)=0解得:x=4或x=2,当等腰三角形的三边为2,2,4时,不符合三角形三边关系定理,此时不能组成三角形;当等腰三角形的三边为2,4,4时,符合三角形三边关系

    8、定理,此时能组成三角形,所以三角形的底边长为2,故选:A【考点】本题考查了等腰三角形的性质,三角形的三边关系,解一元二次方程,能求出方程的解并能够判断三角形三边存在的条件是解此题的关键6、A【解析】【分析】根据给出的对称轴求出函数解析式为,将一元二次方程的实数根可以看做与函数的有交点,再由的范围确定的取值范围即可求解;【详解】的对称轴为直线,一元二次方程的实数根可以看做与函数的有交点,方程在的范围内有实数根,当时,当时,函数在时有最小值2,故选A【考点】本题考查二次函数的图象及性质;能够将方程的实数根问题转化为二次函数与直线的交点问题,借助数形结合解题是关键7、A【解析】【分析】通过根与系数之

    9、间的关系得到,由可求出m的值,通过方程有实数根可得到,从而得到m的取值范围,确定m的值【详解】解:方程有两个实数根,整理得,解得,若使有实数根,则,解得,所以,故选:A【考点】本题考查了一元二次方程根与系数之间的关系和跟的判别式,注意使一元二次方程有实数根的条件是解题的关键8、C【解析】【分析】按照方程的解的含义、一元二次方程的实数根与判别式的关系、等式的性质、一元二次方程的求根公式等对各选项分别讨论,可得答案【详解】解:若a+b+c=0,则x=1是方程ax2+bx+c=0的解,由一元二次方程的实数根与判别式的关系可知:=b2-4ac0,故正确;方程ax2+c=0有两个不相等的实根,=0-4a

    10、c0,-4ac0则方程ax2+bx+c=0的判别式=b2-4ac0,方程ax2+bx+c=0必有两个不相等的实根,故正确;c是方程ax2+bx+c=0的一个根,则ac2+bc+c=0,c(ac+b+1)=0,若c=0,等式仍然成立,但ac+b+1=0不一定成立,故不正确;若x0是一元二次方程ax2+bx+c=0的根,则由求根公式可得:x0=,2ax0+b=,b2-4ac=(2ax0+b)2,故正确故正确的有,故选:C【考点】本题考查一元二次方程根的判断,根据方程形式,判断根的情况是求解本题的关键9、A【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】根据题意得,所以故选A【考点】

    11、此题主要考查根与系数的关系,解题的关键是熟知根与系数的性质.10、B【解析】【分析】将方程的常数项移到右边,两边都加上,左边化为完全平方式,右边合并即可得到结果【详解】移项得:,配方得:,即,故选:B【考点】本题考查了解一元二次方程-配方法,利用此方法解方程时,首先将方程二次项系数化为1,常数项移到右边,两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,利用平方根定义开方转化为两个一元一次方程来求解二、填空题1、x=或x=2【解析】【分析】根据一元二次方程的解法解出答案即可【详解】当x2=0时,x=2,当x20时,4x=1,x=,故答案为:x=或x=2【考点】本题考查解一元二次方程

    12、,本题关键在于分情况讨论2、0【解析】【分析】根据一元二次方程的解的定义,将x=-1代入关于x的一元二次方程ax2+bx+c=0(a0)即可求得a-b+c的值【详解】解:关于x的一元二次方程ax2+bx+c=0(a0)的一个根为-1,x=-1满足关于x的一元二次方程ax2+bx+c=0(a0),即a-b+c=0故答案是:0【考点】本题考查的是一元二次方程的根即方程的解的定义一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值即用这个数代替未知数所得式子仍然成立3、3【解析】【详解】【分析】把x=2代入kx2+(k22)x+2k+4=0得4k+2k24+2k+4=0,再解

    13、关于k的方程,然后根据一元二次方程的定义确定k的值即可【详解】把x=2代入kx2+(k22)x+2k+4=0得4k+2k24+2k+4=0,整理得k2+3k=0,解得k1=0,k2=3,因为k0,所以k的值为3故答案为3【考点】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解4、0(答案不唯一)【解析】【分析】根据一元二次方程根的判别式求出的取值范围,由此即可得出答案【详解】解:由题意得:此一元二次方程根的判别式,解得,则的值可以是0,故答案为:0(答案不唯一)【考点】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是

    14、解题关键5、 【解析】【分析】先把方程化为一般形式,确定a、b、c的值,再求的值,最后利用公式法解方程求得x的值.【详解】,a=1,b=3,c=1,=9-4=50,.故答案为 ; .【考点】本题主要考查一元二次方程的解法公式法,把方程化为一般形式,计算出根的判别式=b2-4ac的值是解本题的关键三、解答题1、 (1)x1,x2(2)x14+,x24-【解析】【分析】(1)根据公式法,可得方程的解;(2)根据配方法,可得方程的解(1)解:a2,b-5,c1,b24ac(-5)2-42117,x,x1,x2(2)解:移项得,并配方,得,即(x-4)215,两边开平方,得x4,x14+,x24-【考

    15、点】本题考查了解一元二次方程,配方法解一元二次方程的关键是配方,利用公式法解方程要利用根的判别式2、(1);(2)x8或2【解析】【分析】(1)直接利用立方根以及算术平方根的性质化简得出答案;(2)直接利用平方根的定义计算得出答案【详解】(1)原式23(1)1+1;(2)2(x3)250(x3)225,则x35,解得:x8或2【考点】此题考查实数的运算,解一元二次方程-配方法,解题关键在于掌握运算法则.3、(1)证明见解析;(2)证明见解析;HC=【解析】【分析】(1)要证明OE=OG,只要证明DOGCOE(ASA)即可;(2)要证明ODG=OCE,只要证明ODGOCE即可;设CH=x,由CH

    16、EDCH,可得=,即HC2=EHCD,由此构建方程即可解决问题;【详解】(1)证明:如图1中,四边形ABCD是正方形,ACBD,OD=OC,DOG=COE=90,OEC+OCE=90,DFCE,OEC+ODG=90,ODG=OCE,DOGCOE(ASA),OE=OG(2)证明:如图2中,AC,BD为对角线,OD=OC,OG=OE,DOG=COE=90,ODGOCE,ODG=OCE解:设CH=x,四边形ABCD是正方形,AB=1,BH=1-x,DBC=BDC=ACB=45,EHBC,BEH=EBH=45,EH=BH=1-x,ODG=OCE,BDC-ODG=ACB-OCE,HDC=ECH,EHBC

    17、,EHC=HCD=90,CHEDCH,=,HC2=EHCD,x2=(1-x)1,解得x=或(舍弃),HC=【考点】本题考查正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型4、-2【解析】【分析】有且只有一个公共根,建立方程便可求解了【详解】解:有且只有一个公共根当a=-1时两个方程完全相同,故a-1, 当时,代入第一个方程可得1-a+1=0解得:【考点】本题考查根与系数的关系,关键在于有一个公共根的理解,从而建立方程,求得根5、 (1),(2),【解析】【分析】(1)用公式法解方程即可;(2)用因式分解法解方程即可(1)解:化简得,方程有两个不相等的实数根,(2)解:,【考点】本题考查了一元二次方程的解法,解题关键是熟练运用公式法和因式分解法解方程

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年人教版九年级数学上册第二十一章一元二次方程重点解析试卷(含答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-635349.html
    相关资源 更多
  • 专题提升Ⅳ 带电粒子在组合场中的运动(解析版).docx专题提升Ⅳ 带电粒子在组合场中的运动(解析版).docx
  • 专题提升Ⅳ 带电粒子在组合场中的运动(原卷版).docx专题提升Ⅳ 带电粒子在组合场中的运动(原卷版).docx
  • 专题提升Ⅲ 带电粒子在有界匀强磁场中的运动(解析版).docx专题提升Ⅲ 带电粒子在有界匀强磁场中的运动(解析版).docx
  • 专题提升08 传染病和免疫.docx专题提升08 传染病和免疫.docx
  • 专题提升07 生物进化.docx专题提升07 生物进化.docx
  • 专题提升05 生物的生殖和发育.docx专题提升05 生物的生殖和发育.docx
  • 专题提升03  绿色植物.docx专题提升03  绿色植物.docx
  • 专题提升01 生态系统.docx专题提升01 生态系统.docx
  • 专题提升(一) 古代中国的政治制度(word教参)-2023高考历史(专题史)一轮复习【优化指导】高中总复习·第1轮(全国版).docx专题提升(一) 古代中国的政治制度(word教参)-2023高考历史(专题史)一轮复习【优化指导】高中总复习·第1轮(全国版).docx
  • 专题提升 解直角三角形的实际应用(30题)(解析版).docx专题提升 解直角三角形的实际应用(30题)(解析版).docx
  • 专题提升 解直角三角形的实际应用(30题)(原卷版).docx专题提升 解直角三角形的实际应用(30题)(原卷版).docx
  • 专题提升 相似三角形的判定与性质(30题)(解析版).docx专题提升 相似三角形的判定与性质(30题)(解析版).docx
  • 专题提升 相似三角形的判定与性质(30题)(原卷版).docx专题提升 相似三角形的判定与性质(30题)(原卷版).docx
  • 专题提升 实际问题与反比例函数及其综合应用(30题)(原卷版).docx专题提升 实际问题与反比例函数及其综合应用(30题)(原卷版).docx
  • 专题技巧二 动量守恒与能量守恒综合问题-2021-2022学年高二物理精讲与精练高分突破考点专题系列(人教版2019选择性必修第一册).docx专题技巧二 动量守恒与能量守恒综合问题-2021-2022学年高二物理精讲与精练高分突破考点专题系列(人教版2019选择性必修第一册).docx
  • 专题归类复习四 时态.docx专题归类复习四 时态.docx
  • 专题归类复习二 宾语从句.docx专题归类复习二 宾语从句.docx
  • 专题归类复习三 定语从句.docx专题归类复习三 定语从句.docx
  • 专题归类复习一 连词与并列句、状语从句.docx专题归类复习一 连词与并列句、状语从句.docx
  • 专题强化训练(六)基本不等式求最值-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(六)基本不等式求最值-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练(五)函数应用问题-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(五)函数应用问题-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练(二)分类讨论思想-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(二)分类讨论思想-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练(九)图像变换及应用-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(九)图像变换及应用-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练(三)复合函数问题-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(三)复合函数问题-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练(七)三角函数的化简-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(七)三角函数的化简-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练(一)二次函数在给定区间上最值问题-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(一)二次函数在给定区间上最值问题-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练二 解分式方程的和实际应用问题-2022-2023学年八年级数学上册《考点•题型•技巧》精讲与精练高分突破(人教版).docx专题强化训练二 解分式方程的和实际应用问题-2022-2023学年八年级数学上册《考点•题型•技巧》精讲与精练高分突破(人教版).docx
  • 专题强化训练二 等比数列性质和求和常考重难点强化精选必刷题-2022-2023学年高二数学《考点•题型 •技巧》精讲与精练高分突破系列(人教A版2019选择性必修第二册).docx专题强化训练二 等比数列性质和求和常考重难点强化精选必刷题-2022-2023学年高二数学《考点•题型 •技巧》精讲与精练高分突破系列(人教A版2019选择性必修第二册).docx
  • 专题强化训练二 空间向量在点线面距离、存在性问题的应用-2022-2023学年高二数学《考点•题型 •技巧》精讲与精练高分突破系列(人教A版2019选择性必修第一册).docx专题强化训练二 空间向量在点线面距离、存在性问题的应用-2022-2023学年高二数学《考点•题型 •技巧》精讲与精练高分突破系列(人教A版2019选择性必修第一册).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1