2022-2023学年人教版九年级数学上册第二十四章圆必考点解析试卷(含答案详解版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 人教版 九年级 数学 上册 第二 十四 必考 解析 试卷 答案 详解
- 资源描述:
-
1、人教版九年级数学上册第二十四章圆必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点A,B的坐标分别为,点C为坐标平面内一点,点M为线段的中点,连接,则的最大值为( )ABCD2、如图所示,
2、一个半径为r(r1)的图形纸片在边长为10的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部分面积是()ABCD3、已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()ABCD4、如图,AB是O的直径,点E是AB上一点,过点E作CDAB,交O于点C,D,以下结论正确的是()A若O的半径是2,点E是OB的中点,则CDB若CD,则O的半径是1C若CAB30,则四边形OCBD是菱形D若四边形OCBD是平行四边形,则CAB605、如图,四边形ABCD内接于O,点I是ABC的内心,AIC=124,点E在AD的延长线上,则CDE的度数为()A56B62C68D786、如图1,一个扇
3、形纸片的圆心角为90,半径为6如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A6B69C12D7、如图,点O是ABC的内心,若A70,则BOC的度数是()A120B125C130D1358、如图,已知长方形中,圆B的半径为1,圆A与圆B内切,则点与圆A的位置关系是()A点C在圆A外,点D在圆A内B点C在圆A外,点D在圆A外C点C在圆A上,点D在圆A内D点C在圆A内,点D在圆A外9、如图,公园内有一个半径为18米的圆形草坪,从地走到地有观赏路(劣弧)和便民路(线段).已知、是圆上的点,为圆心,小强从走到,走便民路比走观赏路少走()米.AB
4、CD10、如图,已知O的半径为4,M是O内一点,且OM2,则过点M的所有弦中,弦长是整数的共有()A1条B2条C3条D4条第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,是的外接圆的直径,若,则_2、如图,在RtABC中,ACB=90,AC=6,BC=8,点D是AB的中点,以CD为直径作O,O分别与AC,BC交于点E,F,过点F作O的切线FG,交AB于点G,则FG的长为_3、如图是四个全等的正八边形和一个正方形拼成的图案,已知正方形的面积为4,则一个正八边形的面积为_4、如图,矩形ABCD的对角线AC,BD交于点O,分别以点A,C为圆心,AO长为半径画弧,分别交A
5、B,CD于点E,F若BD4,CAB36,则图中阴影部分的面积为_(结果保留)5、如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为_cm(结果用表示)三、解答题(5小题,每小题10分,共计50分)1、【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形,请你用圆规和无刻度的直尺过圆心作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段,请你用圆规和无刻度的直尺作一个以为斜边的等腰直角三角形;【问题再解】如图3,已知扇形,请你用圆规和无刻度的直尺作一条以点为圆心的圆弧,使扇形的面积被这条圆弧平分(友情提醒
6、:以上作图均不写作法,但需保留作图痕迹)2、如图,已知等边ABC内接于O,BD为内接正十二边形的一边,CD=5 cm,求O的半径R.3、如图,是的直径,点是上一点,点是延长线上一点,是的弦,(1)求证:直线是的切线;(2)若,求的半径;(3)若于点,点为上一点,连接,请找出,之间的关系,并证明4、如图1,正五边形内接于,阅读以下作图过程,并回答下列问题,作法:如图2,作直径;以F为圆心,为半径作圆弧,与交于点M,N;连接(1)求的度数(2)是正三角形吗?请说明理由(3)从点A开始,以长为半径,在上依次截取点,再依次连接这些分点,得到正n边形,求n的值5、如图,两个圆都以点O为圆心,大圆的弦交小
7、圆于两点求证: -参考答案-一、单选题1、B【解析】【分析】如图所示,取AB的中点N,连接ON,MN,根据三角形的三边关系可知OMON+MN,则当ON与MN共线时,OM= ON+MN最大,再根据等腰直角三角形的性质以及三角形的中位线即可解答【详解】解:如图所示,取AB的中点N,连接ON,MN,三角形的三边关系可知OMON+MN,则当ON与MN共线时,OM= ON+MN最大,则ABO为等腰直角三角形,AB=,N为AB的中点,ON=,又M为AC的中点,MN为ABC的中位线,BC=1,则MN=,OM=ON+MN=,OM的最大值为故答案选:B【考点】本题考查了等腰直角三角形的性质以及三角形中位线的性质
8、,解题的关键是确定当ON与MN共线时,OM= ON+MN最大2、C【解析】【分析】当运动到正六边形的角上时,圆与两边的切点分别为,连接,根据正六边形的性质可知,故,再由锐角三角函数的定义用表示出的长,可知圆形纸片不能接触到的部分的面积,由此可得出结论【详解】解:如图所示,连接,此多边形是正六边形,圆形纸片不能接触到的部分的面积故选:C【考点】本题考查的是正多边形和圆,熟知正六边形的性质是解答此题的关键3、C【解析】【分析】先依据题意画出图形,如图(见解析),过点A作于D,利用勾股定理可求出AD的长,再根据三角形内切圆的性质、三角形的面积公式即可得出答案【详解】解:如图,内切圆O的半径为,切点为
9、,则过点A作于D,设,则由勾股定理得:则,即解得,即又即解得则内切圆的半径为故选:C【考点】本题考查了三角形内切圆的性质、勾股定理等知识点,读懂题意,正确画出图形,并求出AD的长是解题关键4、C【解析】【分析】根据垂径定理,解直角三角形知识,一一求解判断即可【详解】解:A、OCOB2,点E是OB的中点,OE1,CDAB,CEO90,CD2CE, ,本选项错误不符合题意;B、根据,缺少条件,无法得出半径是1,本选项错误,不符合题意;C、A30,COB60,OCOB,COB是等边三角形,BCOC,CDAB,CEDE,BCBD,OCODBCBD,四边形OCBD是菱形;故本选项正确本选项符合题意D、四
10、边形OCBD是平行四边形,OC=OD,所以四边形OCBD是菱形OCBC,OCOB,OCOBBC,BOC60,故本选项错误不符合题意故选:C【考点】本题考查了圆周角定理,垂径定理,菱形的判定和性质,等边三角形的判定和性质,正确的理解题意是解题的关键5、C【解析】【分析】由点I是ABC的内心知BAC=2IAC、ACB=2ICA,从而求得B=180(BAC+ACB)=1802(180AIC),再利用圆内接四边形的外角等于内对角可得答案【详解】解:点I是ABC的内心,BAC=2IAC、ACB=2ICA,AIC=124,B=180(BAC+ACB)=1802(IAC+ICA)=1802(180AIC)=
11、68,又四边形ABCD内接于O,CDE=B=68,故选:C【考点】本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质6、A【解析】【分析】连接OD,如图,利用折叠性质得由弧AD、线段AC和CD所围成的图形的面积等于阴影部分的面积,AC=OC,则OD=2OC=6,CD=3,从而得到CDO=30,COD=60,然后根据扇形面积公式,利用由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD-SCOD,进行计算即可【详解】解:连接OD,如图,扇形纸片折叠,使点A与点O恰好重合,折痕为CD,ACOC,OD2OC6,CD,CDO30,COD60,由弧AD、线段AC
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-635834.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
